Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5632, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965276

RESUMO

The power conversion efficiency of perovskite solar cells continues to increase. However, defects in perovskite materials are detrimental to their carrier dynamics and structural stability, ultimately limiting the photovoltaic characteristics and stability of perovskite solar cells. Herein, we report that 6H polytype perovskite effectively engineers defects at the interface with cubic polytype FAPbI3, which facilitates radiative recombination and improves the stability of the polycrystalline film. We particularly show the detrimental effects of shallow-level defect that originates from the formation of the most dominant iodide vacancy (VI+) in FAPbI3. Furthermore, additional surface passivation on top of the hetero-polytypic perovskite film results in an ultra-long carrier lifetime exceeding 18 µs, affords power conversion efficiencies of 24.13% for perovskite solar cells, 21.92% (certified power conversion efficiency: 21.44%) for a module, and long-term stability. The hetero-polytypic perovskite configuration may be considered as close to the ideal polycrystalline structure in terms of charge carrier dynamics and stability.

2.
J Am Chem Soc ; 145(46): 25401-25410, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948677

RESUMO

Nanosized particles of liquid metals are emerging materials that hold promise for applications spanning from microelectronics to catalysis. Yet, knowledge of their chemical reactivity is largely unknown. Here, we study the reactivity of liquid Ga and Cu nanoparticles under the application of a cathodic voltage. We discover that the applied voltage and the spatial proximity of these two particle precursors dictate the reaction outcome. In particular, we find that a gradual voltage ramp is crucial to reduce the native oxide skin of gallium and enable reactive wetting between the Ga and Cu nanoparticles; instead, a voltage step causes dewetting between the two. We determine that the use of liquid Ga/Cu nanodimer precursors, which consist of an oxide-covered Ga domain interfaced with a metallic Cu domain, provides a more uniform mixing and results in more homogeneous reaction products compared to a physical mixture of Ga and Cu NPs. Having learned this, we obtain CuGa2 alloys or solid@liquid CuGa2@Ga core@shell nanoparticles by tuning the stoichiometry of Ga and Cu in the nanodimer precursors. These products reveal an interesting complementarity of thermal and voltage-driven syntheses to expand the compositional range of bimetallic NPs. Finally, we extend the voltage-driven synthesis to the combination of Ga with other elements (Ag, Sn, Co, and W). By rationalizing the impact of the native skin reduction rate, the wetting properties, and the chemical reactivity between Ga and other metals on the results of such voltage-driven chemical manipulation, we define the criteria to predict the outcome of this reaction and set the ground for future studies targeting various applications for multielement nanomaterials based on liquid Ga.

3.
J Am Chem Soc ; 144(40): 18286-18295, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173602

RESUMO

The compositional and structural diversity of bimetallic nanocrystals (NCs) provides a superior tunability of their physico-chemical properties, making them attractive for a variety of applications, including sensing and catalysis. Nevertheless, the manipulation of the properties-determining features of bimetallic NCs still remains a challenge, especially when moving away from noble metals. In this work, we explore the galvanic replacement reaction (GRR) of In NCs and a copper molecular precursor to obtain Cu-In bimetallic NCs with an unprecedented variety of morphologies and distribution of the two metals. We obtain spherical Cu11In9 intermetallic and patchy phase-segregated Cu-In NCs, as well as dimer-like Cu-Cu11In9 and Cu-In NCs. In particular, we find that segregation of the two metals occurs as the GRR progresses with time or with a higher copper precursor concentration. We discover size-dependent reaction kinetics, with the smaller In NCs undergoing a slower transition across the different Cu-In configurations. We compare the obtained results with the bulk Cu-In phase diagram and, interestingly, find that the bigger In NCs stabilize the bulk-like Cu-Cu11In9 configuration before their complete segregation into Cu-In NCs. Finally, we also prove the utility of the new family of Cu-In NCs as model catalysts to elucidate the impact of the metal elemental distribution on the selectivity of these bimetallics toward the electrochemical CO2 reduction reaction. Generally, we demonstrate that the GRR is a powerful synthetic approach beyond noble metal-containing bimetallic structures, yet that the current knowledge on this reaction is challenged when oxophilic and poorly miscible metal pairs are used.


Assuntos
Cobre , Nanopartículas , Dióxido de Carbono , Catálise , Cobre/química , Metais , Nanopartículas/química
4.
Angew Chem Int Ed Engl ; 61(40): e202207457, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35906967

RESUMO

Poly(triazine imide) or PTI is an ordered graphitic carbon nitride hosting Å-scale pores attractive for selective molecular transport. AA'-stacked PTI layers are synthesized by ionothermal route during which ions occupy the framework and occlude the pores. Synthesis of ion-free PTI hosting AB-stacked layers has been reported, however, pores in this configuration are blocked by the neighboring layer. The unavailability of open pore limits application of PTI in molecular transport. Herein, we demonstrate acid treatment for ion depletion which maintains AA' stacking and results in open pore structure. We provide first direct evidence of ion-depleted open pores by imaging with the atomic resolution using integrated differential phase-contrast scanning transmission electron microscopy. Depending on the extent of ion-exchange, AA' stacking with open channels and AB stacking with closed channels are obtained and imaged for the first time. The accessibility of open channels is demonstrated by enhanced proton transport through ion depleted PTI.

5.
Nanoscale ; 14(18): 6771-6776, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35403184

RESUMO

Layered hybrid perovskites are based on organic spacers separating hybrid perovskite slabs. We employ arene and perfluoroarene moieties based on 1,4-phenylenedimethylammonium (PDMA) and its perfluorinated analogue (F-PDMA) in the assembly of hybrid layered Dion-Jacobson perovskite phases. The resulting materials are investigated by X-ray diffraction, UV-vis absorption, photoluminescence, and solid-state NMR spectroscopy to demonstrate the formation of layered perovskite phases. Moreover, their behaviour was probed in humid environments to reveal nanoscale segregation of layered perovskite species based on PDMA and F-PDMA components, along with enhanced stabilities of perfluoroarene systems, which is relevant to their application.

6.
JACS Au ; 2(1): 136-149, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35098230

RESUMO

Lead-free perovskites are attracting increasing interest as nontoxic materials for advanced optoelectronic applications. Here, we report on a family of silver/bismuth bromide double perovskites with lower dimensionality obtained by incorporating phenethylammonium (PEA) as an organic spacer, leading to the realization of two-dimensional double perovskites in the form of (PEA)4AgBiBr8 (n = 1) and the first reported (PEA)2CsAgBiBr7 (n = 2). In contrast to the situation prevailing in lead halide perovskites, we find a rather weak influence of electronic and dielectric confinement on the photophysics of the lead-free double perovskites, with both the 3D Cs2AgBiBr6 and the 2D n = 1 and n = 2 materials being dominated by strong excitonic effects. The large measured Stokes shift is explained by the inherent soft character of the double-perovskite lattices, rather than by the often-invoked band to band indirect recombination. We discuss the implications of these results for the use of double perovskites in light-emitting applications.

7.
Chem Mater ; 33(11): 4035-4044, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34121808

RESUMO

The flexibility of the ZIF-8 aperture, which inhibits a molecular cutoff of 3.4 Å, can be reduced by rapid heat treatment to obtain CO2-selective membranes. However, the early stages of the structural, morphological, and chemical changes responsible for the lattice rigidification remain elusive. Herein, using ex situ and in situ experiments, we determine that a small shrinkage of the unit-cell parameter, ∼0.2%, is mainly responsible for this transformation. Systematic gas permeation studies show that one needs to achieve this shrinkage without a disproportionately large shrinkage in the grain size of the polycrystalline film to avoid the formation of cracks. We show that this condition is uniquely achieved in a short time by exposure of ZIF-8 to a mildly humid environment where lattice parameter shrinkage is accelerated by the incorporation of linker vacancy defects, while the shrinkage in grain size is limited. The water-vapor-led incorporation of linker vacancy defects takes place with an energy barrier of 123 kJ mol-1, much higher than that for the thermal degradation of ZIF-8, <80 kJ mol-1. The latter is promoted by heat treatment in a dry environment at a relatively higher temperature; however, this condition does not shrink the lattice parameters at short exposure time.

8.
ChemSusChem ; 14(14): 3001-3009, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34075712

RESUMO

Incorporating extended pi-conjugated organic cations in layered lead halide perovskites is a recent trend promising to merge the fields of organic semiconductors and lead halide perovskites. Herein, we integrate benzodithiophene (BDT) into Ruddlesden-Popper (RP) layered and quasi-layered lead iodide thin films (with methylammonium, MA) of the form (BDT)2 MAn-1 Pbn I3n+1 . The importance of tuning the ligand chemical structure is shown as an alkyl chain length of at least six carbon atoms is required to form a photoactive RP (n=1) phase. With N=20 or 100, as prepared in the precursor solution following the formula (BDT)2 MAN-1 PbN I3N+1 , the performance and stability of devices surpassed those with phenylethylammonium (PEA). For N=100, the BDT cation gave a power conversion efficiency of up to 14.7 % vs. 13.7 % with PEA. Transient photocurrent, UV photoelectron spectroscopy, and Fourier transform infrared spectroscopy point to improved charge transport in the device active layer and additional electronic states close to the valence band, suggesting the formation of a Lewis adduct between the BDT and surface iodide vacancies.

9.
ACS Appl Mater Interfaces ; 13(12): 14239-14247, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33749235

RESUMO

A strategy for enhancing the photocatalytic performance of MOF-based systems (MOF: metal-organic framework) is developed through the construction of MOF/MOF heterojunctions. The combination of MIL-167 with MIL-125-NH2 leads to the formation of MIL-167/MIL-125-NH2 heterojunctions with improved optoelectronic properties and efficient charge separation. MIL-167/MIL-125-NH2 outperforms its single components MIL-167 and MIL-125-NH2, in terms of photocatalytic H2 production (455 versus 0.8 and 51.2 µmol h-1 g-1, respectively), under visible-light irradiation, without the use of any cocatalysts. This is attributed to the appropriate band alignment of these MOFs, the enhanced visible-light absorption, and long charge separation within MIL-167/MIL-125-NH2. Our findings contribute to the discovery of novel MOF-based photocatalytic systems that can harvest solar energy and exhibit high catalytic activities in the absence of cocatalysts.

10.
Nat Mater ; 20(3): 362-369, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33020610

RESUMO

The synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO4 tetrahedra. Thin films, fabricated by the filtration of a suspension of exfoliated nanosheets, possess two transport pathways: 6-MR apertures and intersheet gaps. The latter were found to dominate the gas transport and yielded a molecular cutoff of 3.6 Å with a H2/N2 selectivity above 20. The gaps were successfully removed by the condensation of the terminal silanol groups of RUB-15 to yield H2/CO2 selectivities up to 100. The high selectivity was exclusively from the transport across 6-MR, which was confirmed by a good agreement between the experimentally determined apparent activation energy of H2 and that computed by ab initio calculations. The scalable fabrication and the attractive sieving performance at 250-300 °C make these membranes promising for precombustion carbon capture.

11.
Adv Sci (Weinh) ; 7(19): 2001014, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33042741

RESUMO

Despite organic/inorganic lead halide perovskite solar cells becoming one of the most promising next-generation photovoltaic materials, instability under heat and light soaking remains unsolved. In this work, a highly hydrophobic cation, perfluorobenzylammonium iodide (5FBzAI), is designed and a 2D perovskite with reinforced intermolecular interactions is engineered, providing improved passivation at the interface that reduces charge recombination and enhances cell stability compared with benchmark 2D systems. Motivated by the strong halogen bond interaction, (5FBzAI)2PbI4 used as a capping layer aligns in in-plane crystal orientation, inducing a reproducible increase of ≈60 mV in the V oc, a twofold improvement compared with its analogous monofluorinated phenylethylammonium iodide (PEAI) recently reported. This endows the system with high power conversion efficiency of 21.65% and extended operational stability after 1100 h of continuous illumination, outlining directions for future work.

12.
Angew Chem Int Ed Engl ; 59(27): 10797-10801, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32227541

RESUMO

The hydroxide-exchange membrane fuel cell (HEMFC) is a promising energy conversion device. However, the development of HEMFC is hampered by the lack of platinum-group-metal-free (PGM-free) electrocatalysts for the hydrogen oxidation reaction (HOR). Now, a Ni catalyst is reported that exhibits the highest mass activity in HOR for a PGM-free catalyst as well as excellent activity in the hydrogen evolution reaction (HER). This catalyst, Ni-H2 -2 %, was optimized through pyrolysis of a Ni-containing metal-organic framework precursor under a mixed N2 /H2 atmosphere, which yielded carbon-supported Ni nanoparticles with different levels of strains. The Ni-H2 -2 % catalyst has an optimal level of strain, which leads to an optimal hydrogen binding energy and a high number of active sites.

13.
Chem Mater ; 322020.
Artigo em Inglês | MEDLINE | ID: mdl-33612965

RESUMO

In this work, a detailed study is conducted to understand how ligand substitution influences the CO2 and N2 adsorption properties of two highly crystalline sodalite metal-organic frameworks (MOFs) known as Cu-BTT (BTT-3 = 1,3,5-benzenetristetrazolate) and Cu-BTTri (BTTri-3 = 1,3,5-benzenetristriazolate). The enthalpy of adsorption and observed adsorption capacities at a given pressure are significantly lower for Cu-BTTri compared to its tetrazole counterpart, Cu-BTT. In situ X-ray and neutron diffraction, which allow visualization of the CO2 and N2 binding sites on the internal surface of Cu-BTTri, provide insights into understanding the subtle differences. As expected, slightly elongated distances between the open Cu2+ sites and surface-bound CO2 in Cu-BTTri can be explained by the fact that the triazolate ligand is a better electron donor than the tetrazolate. The more pronounced Jahn-Teller effect in Cu-BTTri leads to weaker guest binding. The results of the aforementioned structural analysis were complemented by the prediction of the binding energies at each CO2 and N2 adsorption site by density functional theory calculations. In addition, variable temperature in situ diffraction measurements shed light on the fine structural changes of the framework and CO2 occupancies at different adsorption sites as a function of temperature. Finally, simulated breakthrough curves obtained for both sodalite MOFs demonstrate the materials' potential performance in dry postcombustion CO2 capture. The simulation, which considers both framework uptake capacity and selectivity, predicts better separation performance for Cu-BTT. The information obtained in this work highlights how ligand substitution can influence adsorption properties and hence provides further insights into the material optimization for important separations.

14.
J Am Chem Soc ; 142(4): 1792-1800, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31865703

RESUMO

Four spirobisacridine (SBA) hole-transporting materials were synthesized and employed in perovskite solar cells (PSCs). The molecules bear electronically inert alkyl chains of different length and bulkiness, attached to in-plane N atoms of nearly orthogonal spiro-connected acridines. Di-p-methoxyphenylamine (DMPA) substituents tailored to the central SBA-platform define electronic properties of the materials mimicking the structure of the benchmark 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-MeOTAD), while the alkyl pending groups affect molecular packing in thin films and affect the long-term performance of PSCs. Devices with SBA-based hole transporting layers (HTL) attain efficiencies on par with spiro-MeOTAD. More importantly, solar cells with the new HTMs are hysteresis-free and demonstrate good operational stability, despite being doped as spiro-MeOTAD. The best performing MeSBA-DMPA retained 88% of the initial efficiency after a 1000 h aging test under constant illumination. The results clearly demonstrate that SBA-based compounds are potent candidates for a design of new HTMs for PSCs with improved longevity.

15.
Nature ; 576(7786): 253-256, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31827290

RESUMO

Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.

16.
Angew Chem Int Ed Engl ; 58(36): 12632-12639, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31287203

RESUMO

The tunable chemistry linked to the organic/inorganic components in colloidal nanocrystals (NCs) and metal-organic frameworks (MOFs) offers a rich playground to advance the fundamental understanding of materials design for various applications. Herein, we combine these two classes of materials by synthesizing NC/MOF hybrids comprising Ag NCs that are in intimate contact with Al-PMOF ([Al2 (OH)2 (TCPP)]) (tetrakis(4-carboxyphenyl)porphyrin (TCPP)), to form Ag@Al-PMOF. In our hybrids, the NCs are embedded in the MOF while still preserving electrical contact with a conductive substrate. This key feature allows the investigation of the Ag@Al-PMOFs as electrocatalysts for the CO2 reduction reaction (CO2 RR). We show that the pristine interface between the NCs and the MOFs accounts for electronic changes in the Ag, which suppress the hydrogen evolution reaction (HER) and promote the CO2 RR. We also demonstrate a minor contribution of mass-transfer effects imposed by the porous MOF layer under the chosen testing conditions. Furthermore, we find an increased morphological stability of the Ag NCs when combined with the Al-PMOF. The synthesis method is general and applicable to other metal NCs, thus revealing a new way to think about rationally tailored electrocatalytic materials to steer selectivity and improve stability.

17.
Adv Mater ; 31(28): e1900855, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31087696

RESUMO

Although polycrystalline metal-organic framework (MOF) membranes offer several advantages over other nanoporous membranes, thus far they have not yielded good CO2 separation performance, crucial for energy-efficient carbon capture. ZIF-8, one of the most popular MOFs, has a crystallographically determined pore aperture of 0.34 nm, ideal for CO2 /N2 and CO2 /CH4 separation; however, its flexible lattice restricts the corresponding separation selectivities to below 5. A novel postsynthetic rapid heat treatment (RHT), implemented in a few seconds at 360 °C, which drastically improves the carbon capture performance of the ZIF-8 membranes, is reported. Lattice stiffening is confirmed by the appearance of a temperature-activated transport, attributed to a stronger interaction of gas molecules with the pore aperture, with activation energy increasing with the molecular size (CH4 > CO2 > H2 ). Unprecedented CO2 /CH4 , CO2 /N2 , and H2 /CH4 selectivities exceeding 30, 30, and 175, respectively, and complete blockage of C3 H6 , are achieved. Spectroscopic and X-ray diffraction studies confirm that while the coordination environment and crystallinity are unaffected, lattice distortion and strain are incorporated in the ZIF-8 lattice, increasing the lattice stiffness. Overall, RHT treatment is a facile and versatile technique that can vastly improve the gas-separation performance of the MOF membranes.

18.
Eur J Inorg Chem ; 2019(8)2019.
Artigo em Inglês | MEDLINE | ID: mdl-38903611

RESUMO

Herein we present a detailed study of the hydrogen adsorption properties of Cu-BTTri, a robust crystalline metal-organic framework containing open metal-coordination sites. Diffraction techniques, carried out on the activated framework, reveal a structure that is different from what was previously reported. Further, combining standard hydrogen adsorption measurements with in-situ neutron diffraction techniques provides molecular level insight into the hydrogen adsorption process. The diffraction experiments unveil the location of four D2 adsorption sites in Cu-BTTri and shed light on the structural features that promote hydrogen adsorption in this material. Density functional theory (DFT), used to predict the location and strength of binding sites, corroborate the experimental findings. By decomposing binding energies in different sites in various energetic contributions, we show that van der Waals interactions play a crucial role, suggesting a possible route to enhancing the binding energy around open metal coordination sites.

19.
Chem Sci ; 9(25): 5658-5665, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-30061999

RESUMO

Nanocrystal-seeded synthesis relies on the reaction of nanocrystal seeds with a molecular precursor and it can be regarded as the link between sol-gel and solid-state chemistries. This synthesis approach aims at accessing compositionally complex materials, yet to date its full potential remains unexploited. Herein, surface oxidized Cu nanocrystal seeds with diameters from 6 nm to 70 nm are reacted with vanadium acetylacetonate to form ß-Cu2V2O7 with a tunable grain size ranging from 29 nm to 63 nm. In situ X-ray diffraction measurements evidence the occurrence of a solid-state reaction between the NC seeds and the vanadium oxide formed during the annealing. The variation of the ion diffusion lengths, the homogeneity of the precursor solution and the number of nucleation sites with the NC seed size explains the lower formation temperature, the smaller grain size and the higher grain size monodispersity of ß-Cu2V2O7 as the seed size decreases. Finally, the tunability afforded by the nanocrystal-seeded synthesis provides a unique opportunity to correlate the photoelectrochemical performance with the grain size in a size regime close to the charge carrier diffusion length of ß-Cu2V2O7 (20-40 nm). The net photocurrent density peaks when the grain size is 39 nm by reaching 0.23 mA cm-2 at 1.23 V vs. RHE in the presence of a hole scavenger. While still far from the theoretical limit, this result overcomes the current state-of-the-art for ß-Cu2V2O7. An interesting double fold increase in the photocurrent is found in mixed phase ß-Cu2V2O7/CuV2O6 samples, suggesting that nanostructuring and heterostructuring are beneficial to the performance.

20.
Adv Mater ; : e1801612, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29975805

RESUMO

Zinc spinel ferrite, ZnFe2 O4 (ZFO), is an emerging photoanode material for photoelectrochemical (PEC) solar fuel production. However, a lack of fundamental insight into the factors limiting the photocurrent has prevented substantial advance in its performance. Herein, it is found that ZFO nanorod array photoelectrodes with varying crystallinity exhibit vastly different PEC properties. Using a sacrificial hole scavenger (H2 O2 ), spatially defined carrier generation, and electrochemical impedance spectroscopy, it is shown that ZFO with a relatively poor crystallinity but a higher spinel inversion degree (due to cation disorder) exhibits superior photogenerated charge separation efficiency and improved majority charge carrier transport compared to ZFO with higher crystallinity and a lower inversion degree. Conversely, the latter condition leads to better charge injection efficiency. Optimization of these factors, and the addition of a nickel-iron oxide cocatalyst overlayer, leads to a new benchmark solar photocurrent for ZFO of 1.0 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE) and 1.7 mA cm-2 at 1.6 V versus RHE. Importantly, the observed correlation between the cation disorder and the PEC performance represents a new insight into the factors important to the PEC performance of the spinel ferrites and suggests a path to further improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA