Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13972, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886452

RESUMO

In the context of tissue engineering, biofabrication techniques are employed to process cells in hydrogel-based matrices, known as bioinks, into complex 3D structures. The aim is the production of functional tissue models or even entire organs. The regenerative production of biological tissues adheres to a multitude of criteria that ultimately determine the maturation of a functional tissue. These criteria are of biological nature, such as the biomimetic spatial positioning of different cell types within a physiologically and mechanically suitable matrix, which enables tissue maturation. Furthermore, the processing, a combination of technical procedures and biological materials, has proven highly challenging since cells are sensitive to stress, for example from shear and tensile forces, which may affect their vitality. On the other hand, high resolutions are pursued to create optimal conditions for subsequent tissue maturation. From an analytical perspective, it is prudent to first investigate the printing behavior of bioinks before undertaking complex biological tests. According to our findings, conventional shear rheological tests are insufficient to fully characterize the printing behavior of a bioink. For this reason, we have developed optical methods that, complementarily to the already developed tests, allow for quantification of printing quality and further viscoelastic modeling of bioinks.


Assuntos
Bioimpressão , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Bioimpressão/métodos , Engenharia Tecidual/métodos , Hidrogéis/química , Reologia , Humanos , Alicerces Teciduais/química , Viscosidade
2.
Sci Rep ; 14(1): 12945, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839791

RESUMO

Extrusion-based bioprinting is an established method in biofabrication. Suitable bioinks have fundamentally different compositions and characteristics, which should be examined, in order to find a perfect model system. Here, we investigate the effect of two alginate-based, yet unalike 3D-printed bioinks, pre-crosslinked alginate-dialdehyde gelatin (ADA-GEL) and a mixture of alginate, hyaluronic acid, and gelatin (Alg/HA/Gel), on the melanoma cell line Mel Im and vice versa in terms of stiffness, shrinkage, cellular behavior and colony formation over 15 days. Rheological stiffness measurements revealed two soft gels with similar storage moduli. The cells did not have a significant impact on the overall stiffness, whereas ADA-GEL (2.5/2.5%) was significantly stiffer than Alg/HA/Gel (0.5/0.1/3%). Regarding the shrinkage of printed constructs, cells had a significant influence, especially in ADA-GEL, which has covalent bonds between the oxidized alginate and gelatin. Multi-photon microscopy exhibited proliferation, cell spreading and migration in ADA-GEL with cell-cell and cell-matrix interaction, dissimilarly to Alg/HA/Gel, in which cells formed spherical, encapsulated colonies. Scanning electron microscopy and histology showed degradation and multi-layered growth on ADA-GEL and fewer examples of escaped cells on Alg/HA/Gel. Both gels serve as proliferation bioink for melanoma with more necrosis in deeper Alg/HA/Gel colonies and differences in spreading and matrix interaction. These findings show the importance of proper characterization of the bioinks for different applications.


Assuntos
Alginatos , Bioimpressão , Proliferação de Células , Gelatina , Melanoma , Impressão Tridimensional , Alginatos/química , Melanoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Bioimpressão/métodos , Humanos , Tinta , Ácido Hialurônico/química , Reologia , Alicerces Teciduais/química , Engenharia Tecidual/métodos
3.
Mater Today Bio ; 26: 101071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736612

RESUMO

Although 2D cancer models have been the standard for drug development, they don't resemble in vivo properties adequately. 3D models can potentially overcome this. Bioprinting is a promising technique for more refined models to investigate central processes in tumor development such as proliferation, dormancy or metastasis. We aimed to analyze bioinks, which could mimic these different tumor stages in a cast vascularized arteriovenous loop melanoma model in vivo. It has the advantage to be a closed system with a defined microenvironment, supplied only with one vessel-ideal for metastasis research. Tested bioinks showed significant differences in composition, printability, stiffness and microscopic pore structure, which led to different tumor stages (Matrigel and Alg/HA/Gel for progression, Cellink Bioink for dormancy) and resulted in different primary tumor growth (Matrigel significantly higher than Cellink Bioink). Light-sheet fluorescence microscopy revealed differences in vascularization and hemorrhages with no additional vessels found in Cellink Bioink. Histologically, typical human melanoma with different stages was demonstrated. HMB-45-positive tumors in progression inks were infiltrated by macrophages (CD163), highly proliferative (Ki67) and metastatic (MITF/BRN2, ATX, MMP3). Stainings of lymph nodes revealed metastases even without significant primary tumor growth in Cellink Bioink. This model can be used to study tumor pathology and metastasis of different tumor stages and therapies.

4.
Adv Mater ; 35(52): e2305911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655652

RESUMO

3D-bioprinting is a promising technology to produce human tissues as drug screening tool or for organ repair. However, direct printing of living cells has proven difficult. Here, a method is presented to directly 3D-bioprint human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes embedded in a collagen-hyaluronic acid ink, generating centimeter-sized functional ring- and ventricle-shaped cardiac tissues in an accurate and reproducible manner. The printed tissues contain hiPSC-derived cardiomyocytes with well-organized sarcomeres and exhibit spontaneous and regular contractions, which persist for several months and are able to contract against passive resistance. Importantly, beating frequencies of the printed cardiac tissues can be modulated by pharmacological stimulation. This approach opens up new possibilities for generating complex functional cardiac tissues as models for advanced drug screening or as tissue grafts for organ repair or replacement.


Assuntos
Bioimpressão , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Engenharia Tecidual , Impressão Tridimensional
5.
Bioengineering (Basel) ; 10(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508778

RESUMO

Biomaterials with characteristics similar to extracellular matrix and with suitable bioprinting properties are essential for vascular tissue engineering. In search for suitable biomaterials, this study investigated the three hydrogels alginate/hyaluronic acid/gelatin (Alg/HA/Gel), pre-crosslinked alginate di-aldehyde with gelatin (ADA-GEL), and gelatin methacryloyl (GelMA) with respect to their mechanical properties and to the survival, migration, and proliferation of human umbilical vein endothelial cells (HUVECs). In addition, the behavior of HUVECs was compared with their behavior in Matrigel. For this purpose, HUVECs were mixed with the inks both as single cells and as cell spheroids and printed using extrusion-based bioprinting. Good printability with shape fidelity was determined for all inks. The rheological measurements demonstrated the gelling consistency of the inks and shear-thinning behavior. Different Young's moduli of the hydrogels were determined. However, all measured values where within the range defined in the literature, leading to migration and sprouting, as well as reconciling migration with adhesion. Cell survival and proliferation in ADA-GEL and GelMA hydrogels were demonstrated for 14 days. In the Alg/HA/Gel bioink, cell death occurred within 7 days for single cells. Sprouting and migration of the HUVEC spheroids were observed in ADA-GEL and GelMA. Similar behavior of the spheroids was seen in Matrigel. In contrast, the spheroids in the Alg/HA/Gel ink died over the time studied. It has been shown that Alg/HA/Gel does not provide a good environment for long-term survival of HUVECs. In conclusion, ADA-GEL and GelMA are promising inks for vascular tissue engineering.

6.
Elife ; 112022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053000

RESUMO

Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 µm wide microfluidic channel. The fluid shear stress induces large, ear ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe [1] that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell-cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks.


Cells in the human body are viscoelastic: they have some of the properties of an elastic solid, like rubber, as well as properties of a viscous fluid, like oil. To carry out mechanical tasks ­ such as, migrating through tissues to heal a wound or to fight inflammation ­ cells need the right balance of viscosity and elasticity. Measuring these two properties can therefore help researchers to understand important cell tasks and how they are impacted by disease. However, quantifying these viscous and elastic properties is tricky, as both depend on the time-scale they are measured: when pressed slowly, cells appear soft and liquid, but they turn hard and thick when rapidly pressed. Here, Gerum et al. have developed a new system for measuring the viscosity and elasticity of individual cells that is fast, simple, and inexpensive. In this new method, cells are suspended in a specialized solution with a consistency similar to machine oil which is then pushed with high pressure through channels less than half a millimeter wide. The resulting flow of fluid shears the cells, causing them to elongate and rotate, which is captured using a fast camera that takes 500 images per second. Gerum et al. then used artificial intelligence to extract each cell's shape and rotation speed from these images, and calculated their viscosity and elasticity based on existing theories of how viscoelastic objects behave in fluids. Gerum et al. also investigated how the elasticity and viscosity of cells changed with higher rotation frequencies, which corresponds to shorter time-scales. This revealed that while higher frequencies made the cells appear more viscous and elastic, the ratio between these two properties remained the same. This means that researchers can compare results obtained from different experimental techniques, even if the measurements were carried out at completely different frequencies or time-scales. The method developed by Gerum et al. provides a fast an inexpensive way for analyzing the viscosity and elasticity of cells. It could also be a useful tool for screening the effects of drugs, or as a diagnostic tool to detect diseases that affect the mechanical properties of cells.


Assuntos
Elasticidade , Citometria de Fluxo , Reologia/métodos , Estresse Mecânico , Viscosidade
7.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563143

RESUMO

The use of organic-inorganic 3D printed composites with enhanced properties in biomedical applications continues to increase. The present study focuses on the development of 3D printed alginate-based composites incorporating inorganic fillers with different shapes (angular and round), for bone regeneration. Reactive fillers (bioactive glass 13-93 and hydroxyapatite) and non-reactive fillers (inert soda-lime glass) were investigated. Rheological studies and the characterization of various extrusion-based parameters, including material throughput, printability, shape fidelity and filament fusion, were carried out to identify the parameters dominating the printing process. It was shown that the effective surface area of the filler particle has the highest impact on the printing behavior, while the filler reactivity presents a side aspect. Composites with angular particle morphologies showed the same high resolution during the printing process, almost independent from their reactivity, while composites with comparable amounts of round filler particles lacked stackability after printing. Further, it could be shown that a higher effective surface area of the particles can circumvent the need for a higher filler content for obtaining convincing printing results. In addition, it was proven that, by changing the particle shape, the critical filler content for the obtained adequate printability can be altered. Preliminary in vitro biocompatibility investigations were carried out with the bioactive glass containing ink. The 3D printed ink, forming an interconnected porous scaffold, was analyzed regarding its biocompatibility in direct or indirect contact with the pre-osteoblast cell line MC3T3-E1. Both kinds of cell tests showed increased viability and a high rate of proliferation, with complete coverage of the 3D scaffolds' surface already after 7 d post cell-seeding.


Assuntos
Alginatos , Bioimpressão , Bioimpressão/métodos , Regeneração Óssea , Hidrogéis , Impressão Tridimensional , Alicerces Teciduais
8.
Gels ; 8(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35448107

RESUMO

A novel approach, in the context of bioprinting, is the targeted printing of a defined number of cells at desired positions in predefined locations, which thereby opens up new perspectives for life science engineering. One major challenge in this application is to realize the targeted printing of cells onto a gel substrate with high cell survival rates in advanced bioinks. For this purpose, different alginate-dialdehyde-polyethylene glycol (ADA-PEG) inks with different PEG modifications and chain lengths (1-8 kDa) were characterized to evaluate their application as bioinks for drop on demand (DoD) printing. The biochemical properties of the inks, printing process, NIH/3T3 fibroblast cell distribution within a droplet and shear forces during printing were analyzed. Finally, different hydrogels were evaluated as a printing substrate. By analysing different PEG chain lengths with covalently crosslinked and non-crosslinked ADA-PEG inks, it was shown that the influence of Schiff's bases on the viscosity of the corresponding materials is very low. Furthermore, it was shown that longer polymer chains resulted in less stable hydrogels, leading to fast degradation rates. Several bioinks highly exhibit biocompatibility, while the calculated nozzle shear stress increased from approx. 1.3 and 2.3 kPa. Moreover, we determined the number of cells for printed droplets depending on the initial cell concentration, which is crucially needed for targeted cell printing approaches.

9.
Polymers (Basel) ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406208

RESUMO

Charge control substances (CCS) as additives for polymer powders are investigated to make polymer powders suitable for the electrophotographic powder deposition in powder-based additive manufacturing. The use of CCS unifies the occurring charge of a powder, which is crucial for this novel deposition method. Therefore, commercially available polymer powder is functionalized via dry coating in a shaker mixer with two different CCS and analyzed afterwards. The flowability and the degree of coverage of additives on the surface are used to evaluate the coating process. The thermal properties are analyzed by use of differential scanning calorimetry. Most important, the influence of the CCS on the powder charge is shown by measurements of the electrostatic surface potential at first and the powder deposition itself is performed and analyzed with selected formulations afterwards to show the potential of this method. Finally, tensile strength specimens are produced with the conventional deposition method in order to show the usability of the CCS for current machines.

10.
Adv Healthc Mater ; 10(20): e2100926, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499814

RESUMO

Cardiac tissue engineering is a promising strategy to generate human cardiac tissues for modeling cardiac diseases, screening for therapeutic drugs, and repairing the injured heart. Yet, several issues remain to be resolved including the generation of tissues with high cardiomyocyte density. Here, it is shown that the integration of the glycogen synthase kinase-3ß inhibitor CHIR99021 in collagen I hydrogels promotes proliferation of human-induced pluripotent stem cell-derived (hiPSC) cardiomyocytes post-fabrication improving contractility of and calcium flow in engineered 3D cardiac microtissues. CHIR99021 has no effect on the gelation kinetics or the mechanical properties of collagen I hydrogels. Analysis of cell density and proliferation based on Ki-67 staining indicates that integration of CHIR99021 together with external CHIR99021 stimulation increases hiPSC-cardiomyocyte number by ≈2-fold within 7 d post-fabrication. Analysis of the contractility of engineered cardiac tissues after another 3 d in the absence of external CHIR99021 shows that CHIR99021-induced hiPSC-cardiomyocyte proliferation results in synchronized calcium flow, rhythmic beating, increased speed of contraction and contraction amplitude, and reduced peak-to-peak time. The CHIR99021-stimulated engineered cardiac microtissues exhibit spontaneous rhythmic contractions for at least 35 d. Collectively, the data demonstrate the potential of induced cardiomyocyte proliferation to enhance engineered cardiac microtissues by increasing cardiomyocyte density.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Proliferação de Células , Humanos , Miócitos Cardíacos , Piridinas/farmacologia , Pirimidinas
11.
Mater Sci Eng C Mater Biol Appl ; 128: 112336, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474887

RESUMO

This study used methylcellulose (MC) to improve the printability of the alginate dialdehyde-gelatin (ADA-GEL) based bioink. The printability as well as the capability to maintain shape fidelity of ADA-GEL could be enhanced by the addition of 9% (w/v) MC. Moreover, the properties of the ink crosslinked with Ca2+ and Ba2+ were investigated. The samples crosslinked with Ba2+ were more stable and stiffer than the Ca2+ crosslinked samples. However, both Ca2+ and Ba2+ crosslinked samples exhibited a similar trend of MC release during incubation under cell culture conditions. The toxicity test indicated that both samples (crosslinked with Ca2+ and Ba2+) exhibited no toxic potential. The fabrication of cell-laden constructs using the developed bioinks was evaluated. The viability of ST2 cells in Ba2+ crosslinked samples increased while for Ca2+ crosslinked samples, a decreased viability was observed over the incubation time. After 21 days, cell spreading in the hydrogels crosslinked with Ba2+ occurred. However, a certain degree of cell damage was observed after incorporating the cells in the high viscosity bioink.


Assuntos
Bioimpressão , Gelatina , Alginatos , Sobrevivência Celular , Hidrogéis , Metilcelulose , Impressão Tridimensional , Alicerces Teciduais
12.
Cancers (Basel) ; 13(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34439267

RESUMO

Alginate hydrogels have been used as a biomaterial for 3D culturing for several years. Here, gene expression patterns in melanoma cells cultivated in 3D alginate are compared to 2D cultures. It is well-known that 2D cell culture is not resembling the complex in vivo situation well. However, the use of very intricate 3D models does not allow performing high-throughput screening and analysis is highly complex. 3D cell culture strategies in hydrogels will better mimic the in vivo situation while they maintain feasibility for large-scale analysis. As alginate is an easy-to-use material and due to its favorable properties, it is commonly applied as a bioink component in the growing field of cell encapsulation and biofabrication. Yet, only a little information about the transcriptome in 3D cultures in hydrogels like alginate is available. In this study, changes in the transcriptome based on RNA-Seq data by cultivating melanoma cells in 3D alginate are analyzed and reveal marked changes compared to cells cultured on usual 2D tissue culture plastic. Deregulated genes represent valuable cues to signaling pathways and molecules affected by the culture method. Using this as a model system for tumor cell plasticity and heterogeneity, EGR1 is determined to play an important role in melanoma progression.

13.
Cancers (Basel) ; 12(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824576

RESUMO

Bioprinting offers the opportunity to fabricate precise 3D tumor models to study tumor pathophysiology and progression. However, the choice of the bioink used is important. In this study, cell behavior was studied in three mechanically and biologically different hydrogels (alginate, alginate dialdehyde crosslinked with gelatin (ADA-GEL), and thiol-modified hyaluronan (HA-SH crosslinked with PEGDA)) with cells from breast cancer (MDA-MB-231 and MCF-7) and melanoma (Mel Im and MV3), by analyzing survival, growth, and the amount of metabolically active, living cells via WST-8 labeling. Material characteristics were analyzed by dynamic mechanical analysis. Cell lines revealed significantly increased cell numbers in low-percentage alginate and HA-SH from day 1 to 14, while only Mel Im also revealed an increase in ADA-GEL. MCF-7 showed a preference for 1% alginate. Melanoma cells tended to proliferate better in ADA-GEL and HA-SH than mammary carcinoma cells. In 1% alginate, breast cancer cells showed equally good proliferation compared to melanoma cell lines. A smaller area was colonized in high-percentage alginate-based hydrogels. Moreover, 3% alginate was the stiffest material, and 2.5% ADA-GEL was the softest material. The other hydrogels were in the same range in between. Therefore, cellular responses were not only stiffness-dependent. With 1% alginate and HA-SH, we identified matrices that enable proliferation of all tested tumor cell lines while maintaining expected tumor heterogeneity. By adapting hydrogels, differences could be accentuated. This opens up the possibility of understanding and analyzing tumor heterogeneity by biofabrication.

14.
PLoS One ; 15(7): e0236371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706802

RESUMO

We present a simple but accurate algorithm to calculate the flow and shear rate profile of shear thinning fluids, as typically used in biofabrication applications, with an arbitrary viscosity-shear rate relationship in a cylindrical nozzle. By interpolating the viscosity with a set of power-law functions, we obtain a mathematically exact piecewise solution to the incompressible Navier-Stokes equation. The algorithm is validated with known solutions for a simplified Carreau-Yasuda fluid, full numerical simulations for a realistic chitosan hydrogel as well as experimental velocity profiles of alginate and chitosan solutions in a microfluidic channel. We implement the algorithm in an easy-to-use Python tool, included as Supplementary Material, to calculate the velocity and shear rate profile during the printing process, depending on the shear thinning behavior of the bioink and printing parameters such as pressure and nozzle size. We confirm that the shear stress varies in an exactly linear fashion, starting from zero at the nozzle center to the maximum shear stress at the wall, independent of the shear thinning properties of the bioink. Finally, we demonstrate how our method can be inverted to obtain rheological bioink parameters in-situ directly before or even during printing from experimentally measured flow rate versus pressure data.


Assuntos
Alginatos/química , Quitosana/química , Hidrogéis/química , Agulhas , Impressão Tridimensional/instrumentação , Algoritmos , Hidrodinâmica , Microfluídica , Resistência ao Cisalhamento , Viscosidade
15.
J Mater Sci Mater Med ; 31(3): 31, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152812

RESUMO

Alginate dialdehyde-gelatin (ADA-GEL) hydrogels have been reported to be suitable matrices for cell encapsulation. In general, application of ADA-GEL as bioink has been limited to planar structures due to its low viscosity. In this work, ring shaped constructs of ADA-GEL hydrogel were fabricated by casting the hydrogel into sacrificial molds which were 3D printed from 9% methylcellulose and 5% gelatin. Dissolution of the supporting structure was observed during the 1st week of sample incubation. In addition, the effect of different crosslinkers (Ba2+ and Ca2+) on the physicochemical properties of ADA-GEL and on the behavior of encapsulated MG-63 cells was investigated. It was found that Ba2+ crosslinked network had more than twice higher storage modulus, and mass decrease to 70% during incubation compared to 42% in case of hydrogels crosslinked with Ca2+. In addition, faster increase in cell viability during incubation and earlier cell network formation were observed after Ba2+ crosslinking. No negative effects on cell activity due to the use of sacrificial materials were observed. The approach presented here could be further developed for cell-laden ADA-GEL bioink printing into complex 3D structures.


Assuntos
Aldeídos/química , Alginatos/química , Gelatina/química , Hidrogéis/química , Impressão Tridimensional , Bário/química , Bioimpressão , Cálcio/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Humanos , Engenharia Tecidual , Alicerces Teciduais/química , Viscosidade
16.
Biophys J ; 118(3): 657-666, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952805

RESUMO

We describe a technique for simultaneous quantification of the contractile forces and cytosolic calcium dynamics of muscle fibers embedded in three-dimensional biopolymer gels under auxotonic loading conditions. We derive a scaling law for linear elastic matrices such as basement membrane extract hydrogels (Matrigel) that allows us to measure contractile force from the shape of the relaxed and contracted muscle cell and the Young's modulus of the matrix without further knowledge of the matrix deformations surrounding the cell and without performing computationally intensive inverse force reconstruction algorithms. We apply our method to isolated mouse flexor digitorum brevis (FDB) fibers that are embedded in 10 mg/mL Matrigel. Upon electrical stimulation, individual FDB fibers show twitch forces of 0.37 ± 0.15 µN and tetanic forces (100-Hz stimulation frequency) of 2.38 ± 0.71 µN, corresponding to a tension of 0.44 ± 0.25 kPa and 2.53 ± 1.17 kPa, respectively. Contractile forces of FDB fibers increase in response to caffeine and the troponin-calcium stabilizer tirasemtiv, similar to responses measured in whole muscle. From simultaneous high-speed measurements of cell length changes and cytosolic calcium concentration using confocal line scanning at a frequency of 2048 Hz, we show that twitch and tetanic force responses to electric pulses follow the low-pass filtered calcium signal. In summary, we present a technically simple high-speed method for measuring contractile forces and cytosolic calcium dynamics of single muscle fibers. We expect that our method will help to reduce preparation time, costs, and the number of sacrificed animals needed for experiments such as drug testing.


Assuntos
Microscopia , Tração , Animais , Cálcio , Estimulação Elétrica , Camundongos , Contração Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA