Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 157101, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682997

RESUMO

Many classes of active matter develop spatial memory by encoding information in space. We present a framework based on mathematical billiards, wherein particles remember their past trajectories. Despite its deterministic rules, such a system is strongly nonergodic and exhibits intermittent statistics and complex pattern formation. We show how these features emerge from the dynamic change of topology. Our work illustrates how the dynamics of a single-body system can dramatically change with spatial memory, laying the groundwork to further explore systems with complex memory kernels.

2.
Sci Adv ; 9(42): eadi8643, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862415

RESUMO

Mechanosensing, the transduction of extracellular mechanical stimuli into intracellular biochemical signals, is a fundamental property of living cells. However, endowing synthetic materials with mechanosensing capabilities comparable to biological levels is challenging. Here, we developed ultrasensitive and robust mechanoluminescent living composites using hydrogels embedded with dinoflagellates, unicellular microalgae with a near-instantaneous and ultrasensitive bioluminescent response to mechanical stress. Not only did embedded dinoflagellates retain their intrinsic mechanoluminescence, but with hydrophobic coatings, living composites had a lifetime of ~5 months under harsh conditions with minimal maintenance. We 3D-printed living composites into large-scale mechanoluminescent structures with high spatial resolution, and we also enhanced their mechanical properties with double-network hydrogels. We propose a counterpart mathematical model that captured experimental mechanoluminescent observations to predict mechanoluminescence based on deformation and applied stress. We also demonstrated the use of the mechanosensing composites for biomimetic soft actuators that emitted colored light upon magnetic actuation. These mechanosensing composites have substantial potential in biohybrid sensors and robotics.


Assuntos
Dinoflagellida , Microalgas , Robótica , Biomimética , Hidrogéis
3.
Proc Natl Acad Sci U S A ; 120(3): e2216497120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36638210

RESUMO

Plants have developed intricate mechanisms to adapt to changing light conditions. Besides phototropism and heliotropism (differential growth toward light and diurnal motion with respect to sunlight, respectively), chloroplast motion acts as a fast mechanism to change the intracellular structure of leaf cells. While chloroplasts move toward the sides of the plant cell to avoid strong light, they accumulate and spread out into a layer on the bottom of the cell at low light to increase the light absorption efficiency. Although the motion of chloroplasts has been studied for over a century, the collective organelle motion leading to light-adapting self-organized structures remains elusive. Here, we study the active motion of chloroplasts under dim-light conditions, leading to an accumulation in a densely packed quasi-2D layer. We observe burst-like rearrangements and show that these dynamics resemble systems close to the glass transition by tracking individual chloroplasts. Furthermore, we provide a minimal mathematical model to uncover relevant system parameters controlling the stability of the dense configuration of chloroplasts. Our study suggests that the meta-stable caging close to the glass transition in the chloroplast monolayer serves a physiological relevance: Chloroplasts remain in a spread-out configuration to increase the light uptake but can easily fluidize when the activity is increased to efficiently rearrange the structure toward an avoidance state. Our research opens questions about the role that dynamical phase transitions could play in self-organized intracellular responses of plant cells toward environmental cues.


Assuntos
Cloroplastos , Células Vegetais , Cloroplastos/fisiologia , Luz Solar , Fototropismo , Folhas de Planta/fisiologia , Luz
4.
Elife ; 112022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195068

RESUMO

In multicellular organisms, the specification, coordination, and compartmentalization of cell types enable the formation of complex body plans. However, some eukaryotic protists such as slime molds generate diverse and complex structures while remaining in a multinucleate syncytial state. It is unknown if different regions of these giant syncytial cells have distinct transcriptional responses to environmental encounters and if nuclei within the cell diversify into heterogeneous states. Here, we performed spatial transcriptome analysis of the slime mold Physarum polycephalum in the plasmodium state under different environmental conditions and used single-nucleus RNA-sequencing to dissect gene expression heterogeneity among nuclei. Our data identifies transcriptome regionality in the organism that associates with proliferation, syncytial substructures, and localized environmental conditions. Further, we find that nuclei are heterogenous in their transcriptional profile and may process local signals within the plasmodium to coordinate cell growth, metabolism, and reproduction. To understand how nuclei variation within the syncytium compares to heterogeneity in single-nucleus cells, we analyzed states in single Physarum amoebal cells. We observed amoebal cell states at different stages of mitosis and meiosis, and identified cytokinetic features that are specific to nuclei divisions within the syncytium. Notably, we do not find evidence for predefined transcriptomic states in the amoebae that are observed in the syncytium. Our data shows that a single-celled slime mold can control its gene expression in a region-specific manner while lacking cellular compartmentalization and suggests that nuclei are mobile processors facilitating local specialized functions. More broadly, slime molds offer the extraordinary opportunity to explore how organisms can evolve regulatory mechanisms to divide labor, specialize, balance competition with cooperation, and perform other foundational principles that govern the logic of life.


Assuntos
Células Gigantes/fisiologia , Physarum polycephalum/metabolismo , Análise de Célula Única , Transcriptoma , Regulação da Expressão Gênica , RNA-Seq
5.
Phys Rev Lett ; 125(2): 028102, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701324

RESUMO

One of the characteristic features of many marine dinoflagellates is their bioluminescence, which lights up nighttime breaking waves or seawater sliced by a ship's prow. While the internal biochemistry of light production by these microorganisms is well established, the manner by which fluid shear or mechanical forces trigger bioluminescence is still poorly understood. We report controlled measurements of the relation between mechanical stress and light production at the single cell level, using high-speed imaging of micropipette-held cells of the marine dinoflagellate Pyrocystis lunula subjected to localized fluid flows or direct indentation. We find a viscoelastic response in which light intensity depends on both the amplitude and rate of deformation, consistent with the action of stretch-activated ion channels. A phenomenological model captures the experimental observations.


Assuntos
Dinoflagellida/fisiologia , Modelos Biológicos , Dinoflagellida/química , Dinoflagellida/ultraestrutura , Canais Iônicos/química , Canais Iônicos/fisiologia , Luminescência , Análise de Célula Única , Estresse Mecânico , Substâncias Viscoelásticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA