Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1321-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816101

RESUMO

Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.


Assuntos
Hidrolases/química , Hidrolases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrolases/genética , Modelos Moleculares , Mucopolissacaridose III/fisiopatologia , Fosfatos/metabolismo , Conformação Proteica , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Sulfatos/metabolismo
2.
J Biol Chem ; 284(6): 3976-84, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19038966

RESUMO

Late infantile neuronal ceroid lipofuscinosis, a fatal neurodegenerative disease of childhood, is caused by mutations in the TPP1 gene that encodes tripeptidyl-peptidase I. We show that purified TPP1 requires at least partial glycosylation for in vitro autoprocessing and proteolytic activity. We crystallized the fully glycosylated TPP1 precursor under conditions that implied partial autocatalytic cleavage between the prosegment and the catalytic domain. X-ray crystallographic analysis at 2.35 angstroms resolution reveals a globular structure with a subtilisin-like fold, a Ser475-Glu272-Asp360 catalytic triad, and an octahedrally coordinated Ca2+-binding site that are characteristic features of the S53 sedolisin family of peptidases. In contrast to other S53 peptidases, the TPP1 structure revealed steric constraints on the P4 substrate pocket explaining its preferential cleavage of tripeptides from the unsubstituted N terminus of proteins. Two alternative conformations of the catalytic Asp276 are associated with the activation status of TPP1. 28 disease-causing missense mutations are analyzed in the light of the TPP1 structure providing insight into the molecular basis of late infantile neuronal ceroid lipofuscinosis.


Assuntos
Endopeptidases/química , Lipofuscinoses Ceroides Neuronais/enzimologia , Dobramento de Proteína , Aminopeptidases , Linhagem Celular , Cristalografia por Raios X , Dipeptidil Peptidases e Tripeptidil Peptidases , Endopeptidases/genética , Glicosilação , Humanos , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Estrutura Terciária de Proteína/genética , Serina Proteases , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Tripeptidil-Peptidase 1
3.
Am J Hum Genet ; 78(6): 988-98, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16685649

RESUMO

Cathepsin D is a ubiquitously expressed lysosomal protease that is involved in proteolytic degradation, cell invasion, and apoptosis. In mice and sheep, cathepsin D deficiency is known to cause a fatal neurodegenerative disease. Here, we report a novel disorder in a child with early blindness and progressive psychomotor disability. Two missense mutations in the CTSD gene, F229I and W383C, were identified and were found to cause markedly reduced proteolytic activity and a diminished amount of cathepsin D in patient fibroblasts. Expression of cathepsin D mutants in cathepsin D(-/-) mouse fibroblasts revealed disturbed posttranslational processing and intracellular targeting for W383C and diminished maximal enzyme velocity for F229I. The structural effects of cathepsin D mutants were estimated by computer modeling, which suggested larger structural alterations for W383C than for F229I. Our studies broaden the group of human neurodegenerative disorders and add new insight into the cellular functions of human cathepsin D.


Assuntos
Cegueira/genética , Catepsina D/genética , Doenças Neurodegenerativas/genética , Transtornos Psicomotores/genética , Adolescente , Sequência de Aminoácidos , Animais , Cegueira/enzimologia , Cegueira/patologia , Catepsina D/análise , Catepsina D/metabolismo , Feminino , Fibroblastos/enzimologia , Heterozigoto , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Conformação Proteica , Transtornos Psicomotores/enzimologia , Transtornos Psicomotores/patologia , Células de Schwann/enzimologia , Células de Schwann/ultraestrutura , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA