Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 96(4): 1055-1063, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165752

RESUMO

(-)-Englerin A (EA), a potential novel anti-cancer drug, is a potent selective activator of classical transient receptor potential 4 and 5 (TRPC4, TRPC5) channels. As TRPC4 channels are expressed and functional in the lung endothelium, possible side effects such as lung edema formation may arise during its administration. Well-established in vivo rodent models for toxicological testing, however, rapidly degrade this compound to its inactive derivative, englerin B. Therefore, we chose an ex vivo isolated perfused and ventilated murine lung (IPVML) model to detect edema formation due to toxicants, which also reduces the number of incriminating animal experiments required. To evaluate the sensitivity of the IPVML model, short-time (10 min) drops of the pH from 7.4 down to 4.0 were applied, which resulted in linear changes of tidal volumes, wet-to-dry weight ratios and incorporation of FITC-coupled dextran particles from the perfusate. As expected, biological activity of EA was preserved after perfusion in the IPVML model. Concentrations of 50-100 nM EA continuously perfused through the IPVML model did not change tidal volumes and lung weights significantly. Wet-to-dry weight ratios were increased after perfusion of 100 nM EA but permeation of FITC-coupled dextran particles from the perfusate to the lung tissues was not significantly different. Therefore, EA shows little or no significant acute pulmonary toxicity after application of doses expected to activate target ion channels and the IPVML is a sensitive powerful ex vivo model for evaluating acute lung toxicity in accordance with the 3R rules for animal experimentation.


Assuntos
Antineoplásicos , Canais de Cátion TRPC , Animais , Antineoplásicos/toxicidade , Dextranos/metabolismo , Edema , Fluoresceína-5-Isotiocianato , Pulmão/metabolismo , Camundongos , Perfusão , Sesquiterpenos de Guaiano , Canais de Cátion TRPC/metabolismo
2.
Cells ; 10(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917551

RESUMO

Members of the transient receptor potential (TRP) superfamily are broadly expressed in our body and contribute to multiple cellular functions. Most interestingly, the fourth member of the vanilloid family of TRP channels (TRPV4) serves different partially antagonistic functions in the respiratory system. This review highlights the role of TRPV4 channels in lung fibroblasts, the lung endothelium, as well as the alveolar and bronchial epithelium, during physiological and pathophysiological mechanisms. Data available from animal models and human tissues confirm the importance of this ion channel in cellular signal transduction complexes with Ca2+ ions as a second messenger. Moreover, TRPV4 is an excellent therapeutic target with numerous specific compounds regulating its activity in diseases, like asthma, lung fibrosis, edema, and infections.


Assuntos
Sinalização do Cálcio , Pulmão/metabolismo , Pulmão/fisiopatologia , Doenças Respiratórias/metabolismo , Doenças Respiratórias/fisiopatologia , Canais de Cátion TRPV/metabolismo , Animais , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/patologia , Vasodilatação
3.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931478

RESUMO

Ischemia/reperfusion-induced edema (IRE), one of the most significant causes of mortality after lung transplantation, can be mimicked ex vivo in isolated perfused mouse lungs (IPL). Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel studied in endothelium; however, its role in the lung epithelium remains elusive. Here, we show enhanced IRE in TRPV4-deficient (TRPV4-/-) IPL compared with that of WT controls, indicating a protective role of TRPV4 in maintenance of the alveolar epithelial barrier. By immunohistochemistry, mRNA profiling, and electrophysiological characterization, we detected TRPV4 in bronchial epithelium, alveolar epithelial type I (ATI), and alveolar epithelial type II (ATII) cells. Genetic ablation of TRPV4 resulted in reduced expression of the water-conducting aquaporin-5 (AQP-5) channel in ATI cells. Migration of TRPV4-/- ATI cells was reduced, and cell barrier function was impaired. Analysis of isolated primary TRPV4-/- ATII cells revealed a reduced expression of surfactant protein C, and the TRPV4 activator GSK1016790A induced increases in current densities only in WT ATII cells. Moreover, TRPV4-/- lungs of adult mice developed significantly larger mean chord lengths and altered lung function compared with WT lungs. Therefore, our data illustrate essential functions of TRPV4 channels in alveolar epithelial cells and in protection from edema formation.


Assuntos
Aquaporina 5/genética , Edema/genética , Pneumopatias/genética , Traumatismo por Reperfusão/genética , Canais de Cátion TRPV/genética , Células Epiteliais Alveolares/patologia , Animais , Brônquios/metabolismo , Brônquios/patologia , Movimento Celular/genética , Modelos Animais de Doenças , Edema/etiologia , Edema/patologia , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Pneumopatias/etiologia , Pneumopatias/patologia , Transplante de Pulmão/efeitos adversos , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA