Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Clin Med Phys ; 25(7): e14377, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695845

RESUMO

PURPOSE: A computational method based on Monte-Carlo calculations is presented and used to calculate isodose curves for a new upright and tilting CT scanner useful for radiation protection purposes. METHODS: The TOPAS code platform with imported CAD files for key components was used to construct a calculation space for the scanner. A sphere of water acts as the patient would by creating scatter out of the bore. Maximum intensity dose maps are calculated for various possible tilt angles to make sure radiation protection for site planning uses the maximum possible dose everywhere. RESULTS: The resulting maximum intensity isodose lines are more rounded than ones for just a single tilt angle and so closer to isotropic. These maximum intensity curves are closer to the isotropic assumption used in CTDI or DLP based methods of site planning and radiation protection. The isodose lines are similar to those of a standard CT scanner, just tilted upwards. There is more metal above the beam that lessens the dose above versus below isocenter. CONCLUSION: Aside from the orientation, this upright scanner is very similar to a typical CT scanner, and nothing different for shielding needs to be done for this new upright tilting CT scanner, because an isotropic scatter source is often assumed for any CT scanner.


Assuntos
Método de Monte Carlo , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/instrumentação , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Imagens de Fantasmas , Doses de Radiação , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
2.
J Appl Clin Med Phys ; 24(12): e14129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37633842

RESUMO

This study presents position changes of a few radiotherapy-relevant thoracic organs between upright and typical supine patient orientations. Using tools in a commercial treatment planning system (TPS), key anatomical distances were measured for four-dimensional CT data sets and analyzed for the two patient orientations. The uncertainty was calculated as the 95% confidence interval (CI) on the relative difference for each of the four analyzed changes for upright relative to supine, as follows: the distance of the bottom of the heart to the top of the sternum, it changed +2.6% or +4 mm (95% CI [+0.30%,+4.9%]); the distance of the center of the C3 vertebra to the backrest, it changed +29% (95% CI [+22%,+36%]); the contoured left and right lungs increased their volumes respectively: +17% (95% CI [+12%,+21%]) for the left, and +9.9% (95% CI [+4.1%,+16%]); and lastly, the distance from the top of the sternum to the top of the liver, but its uncertainty far exceeded the average change by a factor of two. This last result is therefore inconclusive, the others show that with 95% confidence that a change in internal positions is observed for lung volumes and heart position that could be important for upright treatments.


Assuntos
Posicionamento do Paciente , Prótons , Humanos , Posicionamento do Paciente/métodos , Coração , Decúbito Dorsal
3.
Br J Radiol ; 93(1107): 20190359, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31692372

RESUMO

Proton radiation therapy has been used clinically since 1952, and major advancements in the last 10 years have helped establish protons as a major clinical modality in the cancer-fighting arsenal. Technologies will always evolve, but enough major breakthroughs have been accomplished over the past 10 years to allow for a major revolution in proton therapy. This paper summarizes the major technology advancements with respect to beam delivery that are now ready for mass implementation in the proton therapy space and encourages vendors to bring these to market to benefit the cancer population worldwide. We state why these technologies are essential and ready for implementation, and we discuss how future systems should be designed to accommodate their required features.


Assuntos
Previsões , Marketing de Serviços de Saúde , Neoplasias/radioterapia , Posicionamento do Paciente , Terapia com Prótons/métodos , Terapia com Prótons/tendências , Radioterapia de Intensidade Modulada/métodos , Absorção de Radiação , Calibragem , Humanos , Neoplasias/diagnóstico por imagem , Movimentos dos Órgãos , Radioterapia Guiada por Imagem/métodos , Respiração , Fatores de Tempo , Incerteza
4.
J Appl Clin Med Phys ; 20(12): 127-137, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31763759

RESUMO

PURPOSE: Our purposes are to compare the accuracy of RaySearch's analytical pencil beam (APB) and Monte Carlo (MC) algorithms for clinical proton therapy and to present clinical validation data using a novel animal tissue lung phantom. METHODS: We constructed a realistic lung phantom composed of a rack of lamb resting on a stack of rectangular natural cork slabs simulating lung tissue. The tumor was simulated using 70% lean ground lamb meat inserted in a spherical hole with diameter 40 ± 5 mm carved into the cork slabs. A single-field plan using an anterior beam and a two-field plan using two anterior-oblique beams were delivered to the phantom. Ion chamber array measurements were taken medial and distal to the tumor. Measured doses were compared with calculated RayStation APB and MC calculated doses. RESULTS: Our lung phantom enabled measurements with the MatriXX PT at multiple depths in the phantom. Using the MC calculations, the 3%/3 mm gamma index pass rates, comparing measured with calculated doses, for the distal planes were 74.5% and 85.3% for the APB and 99.1% and 92% for the MC algorithms. The measured data revealed up to 46% and 30% underdosing within the distal regions of the target volume for the single and the two field plans when APB calculations are used. These discrepancies reduced to less than 18% and 7% respectively using the MC calculations. CONCLUSIONS: RaySearch Laboratories' Monte Carlo dose calculation algorithm is superior to the pencil-beam algorithm for lung targets. Clinicians relying on the analytical pencil-beam algorithm should be aware of its pitfalls for this site and verify dose prior to delivery. We conclude that the RayStation MC algorithm is reliable and more accurate than the APB algorithm for lung targets and therefore should be used to plan proton therapy for patients with lung cancer.


Assuntos
Algoritmos , Neoplasias Pulmonares/radioterapia , Método de Monte Carlo , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Terapia com Prótons/métodos , Dosagem Radioterapêutica
5.
J Appl Clin Med Phys ; 20(10): 160-171, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31541536

RESUMO

PURPOSE: The aim of this study is to validate the RayStation Monte Carlo (MC) dose algorithm using animal tissue neck phantoms and a water breast phantom. METHODS: Three anthropomorphic phantoms were used in a clinical setting to test the RayStation MC dose algorithm. We used two real animal necks that were cut to a workable shape while frozen and then thawed before being CT scanned. Secondly, we made a patient breast phantom using a breast prosthesis filled with water and placed on a flat surface. Dose distributions in the animal and breast phantoms were measured using the MatriXX PT device. RESULTS: The measured doses to the neck and breast phantoms compared exceptionally well with doses calculated by the analytical pencil beam (APB) and MC algorithms. The comparisons between APB and MC dose calculations and MatriXX PT measurements yielded an average depth difference for best gamma agreement of <1 mm for the neck phantoms. For the breast phantom better average gamma pass rates between measured and calculated dose distributions were observed for the MC than for the APB algorithms. CONCLUSIONS: The MC dose calculations are more accurate than the APB calculations for the static phantoms conditions we evaluated, especially in areas where significant inhomogeneous interfaces are traversed by the beam.


Assuntos
Algoritmos , Mama/efeitos da radiação , Cabeça/efeitos da radiação , Método de Monte Carlo , Pescoço/efeitos da radiação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Animais , Cervos , Feminino , Humanos , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Terapia com Prótons , Dosagem Radioterapêutica , Ovinos
6.
J Appl Clin Med Phys ; 16(5): 205­218, 2015 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-26699301

RESUMO

We present a quantitative methodology to measure head interfraction movements within intracranial masks of commercial immobilization devices used for proton radiotherapy. A three-points tracking (3PtTrack) method was developed to measure the mask location for each treatment field over an average of 10 fractions for seven patients. Five patients were treated in supine with the Qfix Base-of-Skull (BoS) headframe, and two patients were treated in prone with the CIVCO Uni-frame baseplate. Patients were first localized by an in-room, image-guidance (IG) system, and then the mask location was measured using the 3PtTrack method. Measured mask displacements from initial location at the first fraction are considered equivalent to the head interfraction movement within the mask. The trends of head movements and couch displacements and rotation were analyzed in three major directions. The accuracy of 3PtTrack method was shown to be within 1.0mm based on daily measurements of a QA device after localization by the IG system for a period of three months. For seven patients, mean values of standard deviation (SD) in anterior-posterior, lateral, and superior-inferior directions were 1.1mm, 1.4 mm, and 1.6 mm for head movements, and were 1.4 mm, 1.8 mm, and 3.4mm for couch displacements. The mean SD values of couch rotations were 1.1°, 0.9°, and 1.1° for yaw, pitch, and roll, respectively. The overall patterns of head movements and couch displacements were similar for patients treated in either supine or prone, with larger deviations in the superior-inferior (SI) direction. A suboptimal mask fixation to the frame of the mask to the H&N frame is likely the cause for the observed larger head movements and couch displacements in the SI direction compared to other directions. The optical-tracking methodology provided a quantitative assessment of the magnitude of head motion.


Assuntos
Neoplasias Encefálicas/radioterapia , Imobilização/instrumentação , Imagem Óptica/estatística & dados numéricos , Posicionamento do Paciente , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Humanos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Prognóstico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada
7.
Med Phys ; 38(4): 2299-306, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21626965

RESUMO

PURPOSE: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. METHODS: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. RESULTS: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. CONCLUSIONS: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/instrumentação
8.
Med Phys ; 36(6): 2297-308, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19610318

RESUMO

In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.


Assuntos
Radiometria/instrumentação , Radioterapia Conformacional/instrumentação , Desenho Assistido por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Terapia com Prótons , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Med Phys ; 36(2): 634-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19292004

RESUMO

Calculations of dose per monitor unit (D/MU) are required in addition to measurements to increase patient safety in the clinical practice of proton radiotherapy. As in conventional photon and electron therapy, the D/MU depends on several factors. This study focused on obtaining range and modulation dependence factors used in D/MU calculations for the double scattered proton beam line at the Midwest Proton Radiotherapy Institute. Three dependencies on range and one dependency on modulation were found. A carefully selected set of measurements was performed to discern these individual dependencies. Dependencies on range were due to: (1) the stopping power of the protons passing through the monitor chamber; (2) the reduction of proton fluence due to nuclear interactions within the patient; and (3) the variation of proton fluence passing through the monitor chamber due to different source-to-axis distances (SADs) for different beam ranges. Different SADs are produced by reconfigurations of beamline elements to provide different field sizes and ranges. The SAD effect on the D/MU varies smoothly as the beam range is varied, except at the beam range for which the first scatterers are exchanged and relocated to accommodate low and high beam ranges. A geometry factor was devised to model the SAD variation effect on the D/MU. The measured D/MU variation as a function of range can be predicted within 1% using the three modeled dependencies on range. Investigation of modulated beams showed that an analytical formula can predict the D/MU dependency as a function of modulation to within 1.5%. Special attention must be applied when measuring the D/MU dependence on modulation to avoid interplay between range and SAD effects.


Assuntos
Terapia com Prótons , Doses de Radiação , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA