Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Allergy ; 78(5): 1204-1217, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36424895

RESUMO

BACKGROUND: Allergic diseases are triggered by signaling through the high-affinity IgE receptor, FcεRI. In both mast cells (MCs) and basophils, FcεRI is a tetrameric receptor complex comprising a ligand-binding α subunit (FcεRIα), a tetraspan ß subunit (FcεRIß, MS4A2) responsible for trafficking and signal amplification, and a signal transducing dimer of single transmembrane γ subunits (FcεRIγ). However, FcεRI also exists as presumed trimeric complexes that lack FcεRIß and are expressed on several cell types outside the MC and basophil lineages. Despite known differences between humans and mice in the presence of the trimeric FcεRI complex, questions remain as to how it traffics and whether it signals in the absence of FcεRIß. We have previously reported that targeting FcεRIß with exon-skipping oligonucleotides eliminates IgE-mediated degranulation in mouse MCs, but equivalent targeting in human MCs was not effective at reducing degranulation. RESULTS: Here, we report that the FcεRIß-like protein MS4A6A exists in human MCs and compensates for FcεRIß in FcεRI trafficking and signaling. Human MS4A6A promotes surface expression of FcεRI complexes and facilitates degranulation. MS4A6A and FcεRIß are encoded by highly related genes within the MS4A gene family that cluster within the human gene loci 11q12-q13, a region linked to allergy and asthma susceptibility. CONCLUSIONS: Our data suggest the presence of either FcεRIß or MS4A6A is sufficient for degranulation, indicating that MS4A6A could be an elusive FcεRIß-like protein in human MCs that performs compensatory functions in allergic disease.


Assuntos
Hipersensibilidade , Receptores de IgE , Animais , Humanos , Camundongos , Basófilos/metabolismo , Degranulação Celular , Éxons , Hipersensibilidade/metabolismo , Mastócitos/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Transdução de Sinais
2.
Front Cell Infect Microbiol ; 12: 895022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711655

RESUMO

The leading cause of treatment failure in Staphylococcus aureus infections is the development of biofilms. Biofilms are highly tolerant to conventional antibiotics which were developed against planktonic cells. Consequently, there is a lack of antibiofilm agents in the antibiotic development pipeline. To address this problem, we developed a platelet-rich plasma (PRP)-derived biologic, termed BIO-PLY (for the BIOactive fraction of Platelet-rich plasma LYsate) which has potent in vitro bactericidal activity against S. aureus synovial fluid free-floating biofilm aggregates. Additional in vitro studies using equine synoviocytes and chondrocytes showed that BIO-PLY protected these cells of the joint from inflammation. The goal of this study was to test BIO-PLY for in vivo efficacy using an equine model of infectious arthritis. We found that horses experimentally infected with S. aureus and subsequently treated with BIO-PLY combined with the antibiotic amikacin (AMK) had decreased bacterial concentrations within both synovial fluid and synovial tissue and exhibited lower systemic and local inflammatory scores compared to horses treated with AMK alone. Most importantly, AMK+BIO-PLY treatment reduced the loss of infection-associated cartilage proteoglycan content in articular cartilage and decreased synovial tissue fibrosis and inflammation. Our results demonstrate the in vivo efficacy of AMK+BIO-PLY and represents a new approach to restore and potentiate antimicrobial activity against synovial fluid biofilms.


Assuntos
Artrite Infecciosa , Produtos Biológicos , Plasma Rico em Plaquetas , Infecções Estafilocócicas , Amicacina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Artrite Infecciosa/tratamento farmacológico , Biofilmes , Modelos Animais de Doenças , Cavalos , Inflamação , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Staphylococcus aureus
3.
J Orthop Res ; 38(6): 1365-1374, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922274

RESUMO

Infectious arthritis is difficult to treat in both human and veterinary clinical practice. Recent literature reports Staphylococcus aureus as well as other gram-positive and gram-negative isolates forming free-floating biofilms in both human and equine synovial fluid that are tolerant to traditional antimicrobial therapy. Using an in vitro equine model, we investigated the ability of platelet-rich plasma (PRP) formulations to combat synovial fluid biofilm aggregates. Synovial fluid was infected, and biofilm aggregates allowed to form over a 2-hour period. PRP was collected and processed into different formulations by platelet concentration, leukocyte presence, and activation or lysis. Infected synovial fluid was treated with different PRP formulations with or without aminoglycoside cotreatment. Bacterial load (colony-forming unit/mL) was determined by serial dilutions and plate counting at 8 hours posttreatment. All PRP formulations displayed antimicrobial properties; however, formulations containing higher concentrations of platelets without leukocytes had increased antimicrobial activity. Lysis of PRP and pooling of the PRP lysate (PRP-L) from multiple horses as compared to individual horses further increased antimicrobial activity. This activity was lost with the removal of the plasma component or inhibition of the proteolytic activity within the plasma. Fractionation of pooled PRP-L identified the bioactive components to be cationic and low-molecular weight (<10 kDa). Overall, PRP-L exhibited synergism with amikacin against aminoglycoside tolerant biofilm aggregates with greater activity against gram-positive bacteria. In conclusion, the use of PRP-L has the potential to augment current antimicrobial treatment regimens which could lead to a decrease in morbidity and mortality associated with infectious arthritis.


Assuntos
Antibacterianos/farmacologia , Artrite Infecciosa/tratamento farmacológico , Biofilmes , Plasma Rico em Plaquetas , Líquido Sinovial/microbiologia , Aminoglicosídeos/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Feminino , Cavalos , Masculino , Peso Molecular
4.
Front Vet Sci ; 5: 150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023361

RESUMO

Platelet-rich plasma (PRP) preparations are being used with moderate success to treat osteoarthritis (OA) in humans and in veterinary species. Such preparations are hindered, however, by being autologous in nature and subject to tremendous patient and processing variability. For this reason, there has been increasing interest in the use of platelet lysate preparations instead of traditional PRP. Platelet lysate preparations are acellular, thereby reducing concerns over immunogenicity, and contain high concentrations of growth factors and cytokines. In addition, platelet lysate preparations can be stored frozen for readily available use. The purpose of this study was to evaluate the effects of a pooled allogeneic platelet-rich plasma lysate (PRP-L) preparation on equine synoviocytes and chondrocytes challenged with inflammatory mediators in-vitro to mimic the OA joint environment. Our hypothesis was that PRP-L treatment of inflamed synoviocytes would protect chondrocytes challenged with synoviocyte conditioned media by reducing synoviocyte pro-inflammatory cytokine production while increasing synoviocyte anti-inflammatory cytokine production. Synoviocytes were stimulated with either interleukin-1ß (IL-1ß) or lipopolysaccharide (LPS) for 24 h followed by no treatment or treatment with platelet-poor plasma lysate (PPP-L) or PRP-L for 48 h. Synoviocyte growth was evaluated at the end of the treatment period and synoviocyte conditioned media was assessed for concentrations of hyaluronic acid (HA), IL-1ß, tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6). Chondrocytes were then challenged for 48 h with synoviocyte conditioned media from each stimulation and treatment group and examined for gene expression of collagen types I (COL1A1), II (COL2A1), and III (COL3A1), aggrecan (ACAN), lubricin (PRG4), and matrix metallopeptidase 3 (MMP-3) and 13 (MMP-13). Treatment of inflamed synoviocytes with PRP-L resulted in increased synoviocyte growth and increased synoviocyte HA and IL-6 production. Challenge of chondrocytes with conditioned media from PRP-L treated synoviocytes resulted in increased collagen type II and aggrecan gene expression as well as decreased MMP-13 gene expression. The results of this study support continued investigation into the use of pooled PRP-L for the treatment of osteoarthritis and warrant further in-vitro studies to discern the mechanisms of action of PRP-L.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA