Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588479

RESUMO

OBJECTIVES: Histiocytic disorders are pathologic expansions of myeloid cells in multiple organs, including the CNS. They share activation of the MAP kinase pathway due to either BRAFV600E variant or other variants in the RAS-RAF-MEK-ERK pathway. The rarity and heterogeneity of the disease only enable therapy through pathophysiologic considerations. METHODS: We present 2 histiocytosis cases without BRAF sequence variants that affect the CNS, one with Erdheim-Chester disease and the other with an unspecified histiocytosis, and their diagnostic and therapeutic challenges. RESULTS: In both cases, comprehensive analysis of the RAS-RAF-MEK-ERK signaling pathway secured the diagnosis. Treatment with the MEK inhibitor cobimetinib brought the disease to a complete halt. However, side effects such as thrombosis and serous macular edema made it necessary to reduce cobimetinib dosage. Low-dose cobimetinib maintenance medication was successful in preventing recurrence of histiocytic disease. DISCUSSION: CNS involvement of histiocytic disorders can lead to detrimental neurologic symptoms. MEK inhibitors are effective treatment options for some of these patients. Since side effects are common, according to our cases we propose a low-dose treatment of 20 mg per day to balance treatment effects with side effects. CLASSIFICATION OF EVIDENCE: This case report provides Class IV evidence. This is a single observational study without controls.


Assuntos
Azetidinas , Histiocitose , Piperidinas , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Mutação , Histiocitose/tratamento farmacológico , Histiocitose/induzido quimicamente , Histiocitose/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Quinases de Proteína Quinase Ativadas por Mitógeno
2.
Ann Neurol ; 95(4): 720-732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086777

RESUMO

OBJECTIVE: To investigate accumulation of disability in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) in a changing treatment landscape. We aimed to identify risk factors for the development of disability milestones in relation to disease duration, number of attacks, and age. METHODS: We analyzed data from individuals with NMOSD and MOGAD from the German Neuromyelitis Optica Study Group registry. Applying survival analyses, we estimated risk factors and computed time to disability milestones as defined by the Expanded Disability Status Score (EDSS). RESULTS: We included 483 patients: 298 AQP4-IgG+ NMOSD, 52 AQP4-IgG-/MOG-IgG- NMOSD patients, and 133 patients with MOGAD. Despite comparable annualized attack rates, disability milestones occurred earlier and after less attacks in NMOSD patients than MOGAD patients (median time to EDSS 3: AQP4-IgG+ NMOSD 7.7 (95% CI 6.6-9.6) years, AQP4-IgG-/MOG-IgG- NMOSD 8.7) years, MOGAD 14.1 (95% CI 10.4-27.6) years; EDSS 4: 11.9 (95% CI 9.7-14.7), 11.6 (95% lower CI 7.6) and 20.4 (95% lower CI 14.1) years; EDSS 6: 20.1 (95% CI 16.5-32.1), 20.7 (95% lower CI 11.6), and 37.3 (95% lower CI 29.4) years; and EDSS 7: 34.2 (95% lower CI 31.1) for AQP4-IgG+ NMOSD). Higher age at onset increased the risk for all disability milestones, while risk of disability decreased over time. INTERPRETATION: AQP4-IgG+ NMOSD, AQP4-IgG-/MOG-IgG- NMOSD, and MOGAD patients show distinctive relapse-associated disability progression, with MOGAD having a less severe disease course. Investigator-initiated research has led to increasing awareness and improved treatment strategies appearing to ameliorate disease outcomes for NMOSD and MOGAD. ANN NEUROL 2024;95:720-732.


Assuntos
Neuromielite Óptica , Humanos , Aquaporina 4 , Glicoproteína Mielina-Oligodendrócito , Autoanticorpos , Imunoglobulina G , Recidiva
3.
Front Immunol ; 14: 1273837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077336

RESUMO

Introduction: The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods: We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results: The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion: Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Astrócitos/metabolismo , Bulbo Olfatório/metabolismo , AMP Cíclico/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo
4.
J Neurol Neurosurg Psychiatry ; 94(9): 718-725, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36807056

RESUMO

The influence of pregnancy on the course of multiple sclerosis (MS) has long been controversial. While historical evidence suggests a substantial decline in relapse rates during pregnancy followed by a rebound in the postpartum period, more recent work yielded equivocal results. We performed a systematic review and meta-analysis on data from cohort studies to determine whether women with MS experience increased relapse rates after delivery. A systematic literature search was conducted in the databases MEDLINE and Epistemonikos on the topic 'motherhood choice in MS' in March 2022. We included cohort studies assessing the association between pregnancy and MS relapse activity defined by the annualised relapse rate after 3, 6, 9 and 12 months post partum. Furthermore, information about disease-modifying therapies (DMT) and breast feeding was considered, if available. 5369 publications were identified. Of these, 93 full-text articles on MS relapse activity during the postpartum period were screened. 11 studies including 2739 pregnancies were eligible. Women with MS showed a significantly increased relapse rate in the first 6 months post partum, compared with preconception with the incidence rate ratio (IRR) almost doubled in the first 3 months post partum (1.87, 95% CI 1.40 to 2.50). However, at 10-12 months post partum, the IRR decreased significantly (0.81, 95% CI 0.67 to 0.98). Subanalysis on influencing parameters suggested that preconceptional DMTs (IRR for highly-effective DMTs 2.76, 95% CI 1.34 to 5.69) and exclusive breast feeding (risk ratio 0.39, 95% CI 0.18 to 0.86) significantly influenced postpartum relapse risk. Increased postpartum annualised relapse rate and possible modifiers should be considered in counselling women with MS who are considering pregnancy.


Assuntos
Esclerose Múltipla , Complicações na Gravidez , Gravidez , Feminino , Humanos , Esclerose Múltipla/complicações , Complicações na Gravidez/epidemiologia , Período Pós-Parto , Estudos de Coortes , Doença Crônica , Recidiva
5.
Front Cell Neurosci ; 16: 912030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846561

RESUMO

Adenine nucleotides, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), as well as the nucleoside adenosine are important modulators of neuronal function by engaging P1 and P2 purinergic receptors. In mitral cells, signaling of the G protein-coupled P1 receptor adenosine 1 receptor (A1R) affects the olfactory sensory pathway by regulating high voltage-activated calcium channels and two-pore domain potassium (K2P) channels. The inflammation of the central nervous system (CNS) impairs the olfactory function and gives rise to large amounts of extracellular ATP and adenosine, which act as pro-inflammatory and anti-inflammatory mediators, respectively. However, it is unclear whether neuronal A1R in the olfactory bulb modulates the sensory function and how this is impacted by inflammation. Here, we show that signaling via neuronal A1R is important for the physiological olfactory function, while it cannot counteract inflammation-induced hyperexcitability and olfactory deficit. Using neuron-specific A1R-deficient mice in patch-clamp recordings, we found that adenosine modulates spontaneous dendro-dendritic signaling in mitral and granule cells via A1R. Furthermore, neuronal A1R deficiency resulted in olfactory dysfunction in two separate olfactory tests. In mice with experimental autoimmune encephalomyelitis (EAE), we detected immune cell infiltration and microglia activation in the olfactory bulb as well as hyperexcitability of mitral cells and olfactory dysfunction. However, neuron-specific A1R activity was unable to attenuate glutamate excitotoxicity in the primary olfactory bulb neurons in vitro or EAE-induced olfactory dysfunction and disease severity in vivo. Together, we demonstrate that A1R modulates the dendro-dendritic inhibition (DDI) at the site of mitral and granule cells and impacts the processing of the olfactory sensory information, while A1R activity was unable to counteract inflammation-induced hyperexcitability.

6.
Eur J Neurol ; 29(1): 138-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478596

RESUMO

BACKGROUND: The objective of the STREAM Trial was to evaluate the effect of simulation training on process times in acute stroke care. METHODS: The multicenter prospective interventional STREAM Trial was conducted between 10/2017 and 04/2019 at seven tertiary care neurocenters in Germany with a pre- and post-interventional observation phase. We recorded patient characteristics, acute stroke care process times, stroke team composition and simulation experience for consecutive direct-to-center patients receiving intravenous thrombolysis (IVT) and/or endovascular therapy (EVT). The intervention consisted of a composite intervention centered around stroke-specific in situ simulation training. Primary outcome measure was the 'door-to-needle' time (DTN) for IVT. Secondary outcome measures included process times of EVT and measures taken to streamline the pre-existing treatment algorithm. RESULTS: The effect of the STREAM intervention on the process times of all acute stroke operations was neutral. However, secondary analyses showed a DTN reduction of 5 min from 38 min pre-intervention (interquartile range [IQR] 25-43 min) to 33 min (IQR 23-39 min, p = 0.03) post-intervention achieved by simulation-experienced stroke teams. Concerning EVT, we found significantly shorter door-to-groin times in patients who were treated by teams with simulation experience as compared to simulation-naive teams in the post-interventional phase (-21 min, simulation-naive: 95 min, IQR 69-111 vs. simulation-experienced: 74 min, IQR 51-92, p = 0.04). CONCLUSION: An intervention combining workflow refinement and simulation-based stroke team training has the potential to improve process times in acute stroke care.


Assuntos
Treinamento por Simulação , Acidente Vascular Cerebral , Fibrinolíticos/uso terapêutico , Humanos , Estudos Prospectivos , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica/efeitos adversos , Tempo para o Tratamento , Resultado do Tratamento
7.
Med ; 2(3): 296-312.e8, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33748804

RESUMO

BACKGROUND: Multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), can be suppressed in its early stages but eventually becomes clinically progressive and unresponsive to therapy. Here, we investigate whether the therapeutic resistance of progressive MS can be attributed to chronic immune cell accumulation behind the blood-brain barrier (BBB). METHODS: We systematically track CNS-homing immune cells in the peripheral blood of 31 MS patients and 31 matched healthy individuals in an integrated analysis of 497,705 single-cell transcriptomes and 355,433 surface protein profiles from 71 samples. Through spatial RNA sequencing, we localize these cells in post mortem brain tissue of 6 progressive MS patients contrasted against 4 control brains (20 samples, 85,000 spot transcriptomes). FINDINGS: We identify a specific pathogenic CD161+/lymphotoxin beta (LTB)+ T cell population that resides in brains of progressive MS patients. Intriguingly, our data suggest that the colonization of the CNS by these T cells may begin earlier in the disease course, as they can be mobilized to the blood by usage of the integrin-blocking antibody natalizumab in relapsing-remitting MS patients. CONCLUSIONS: As a consequence, we lay the groundwork for a therapeutic strategy to deplete CNS-homing T cells before they can fuel treatment-resistant progression. FUNDING: This study was supported by funding from the University Medical Center Hamburg-Eppendorf, the Stifterverband für die Deutsche Wissenschaft, the OAK Foundation, Medical Research Council UK, and Wellcome.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Sistema Nervoso Central/patologia , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/uso terapêutico , Linfócitos T/patologia
8.
Elife ; 102021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33565962

RESUMO

While transcripts of neuronal mitochondrial genes are strongly suppressed in central nervous system inflammation, it is unknown whether this results in mitochondrial dysfunction and whether an increase of mitochondrial function can rescue neurodegeneration. Here, we show that predominantly genes of the electron transport chain are suppressed in inflamed mouse neurons, resulting in impaired mitochondrial complex IV activity. This was associated with post-translational inactivation of the transcriptional co-regulator proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). In mice, neuronal overexpression of Ppargc1a, which encodes for PGC-1α, led to increased numbers of mitochondria, complex IV activity, and maximum respiratory capacity. Moreover, Ppargc1a-overexpressing neurons showed a higher mitochondrial membrane potential that related to an improved calcium buffering capacity. Accordingly, neuronal deletion of Ppargc1a aggravated neurodegeneration during experimental autoimmune encephalomyelitis, while neuronal overexpression of Ppargc1a ameliorated it. Our study provides systemic insights into mitochondrial dysfunction in neurons during inflammation and commends elevation of mitochondrial activity as a promising neuroprotective strategy.


Multiple sclerosis is a life-long neurological condition that typically begins when people are in their twenties or thirties. Symptoms vary between individuals, and within a single individual over time, but can include difficulties with vision, balance, movement and thinking. These occur because the immune system of people with multiple sclerosis attacks the brain and spinal cord. This immune assault damages neurons and can eventually cause them to die. But exactly how this happens is unclear, and there are no drugs available that can prevent it. One idea is that the immune attack in multiple sclerosis damages neurons by disrupting structures inside them called mitochondria. These cellular 'organs', or organelles, produce the energy that all cells need to function correctly. If the mitochondria fail to generate enough energy, the cells can die. And because neurons are very active cells with high energy demands, they are particularly vulnerable to the effects of mitochondrial damage. By studying a mouse version of multiple sclerosis, Rosenkranz et al. now show that mitochondria in the neurons of affected animals are less active than those of healthy control mice. This is because the genes inside mitochondria that enable the organelles to produce energy are less active in the multiple sclerosis mice. Most of these genes that determine mitochondrial activity and energy production are under the control of a single master gene called PGC-1alpha. Rosenkranz et al. showed that boosting the activity of this gene ­ by introducing extra copies of it into neurons ­ increases mitochondrial activity in mice. It also makes the animals more resistant to the effects of multiple sclerosis. Boosting the activity of mitochondria in neurons could thus be a worthwhile therapeutic strategy to investigate for multiple sclerosis. Future studies should examine whether drugs that activate PGC-1alpha, for example, could help prevent neuronal death and the resulting symptoms of multiple sclerosis.


Assuntos
Mitocôndrias/metabolismo , Esclerose Múltipla/prevenção & controle , Neurônios/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
9.
Circ Cardiovasc Imaging ; 14(2): e011523, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591212

RESUMO

BACKGROUND: Pharmacological stress testing can help to uncover pathological hemodynamic conditions and is, therefore, used in the clinical routine to assess patients with structural heart diseases such as aortic coarctation with borderline indication for treatment. The aim of this study was to develop and test a reduced-order model predicting dobutamine stress induced pressure gradients across the coarctation. METHODS: The reduced-order model was developed based on n=21 imaging data sets of patients with aortic coarctation and a meta-analysis of subjects undergoing dobutamine stress testing. Within an independent test cohort of n=21 patients with aortic coarctation, the results of the model were compared with dobutamine stress testing during catheterization. RESULTS: In n=19 patients responding to dobutamine stress testing, pressure gradients across the coarctation during dobutamine stress increased from 15.7±5.1 to 33.6±10.3 mm Hg (paired t test, P<0.001). The model-predicted pressure gradients agreed with catheter measurements with a mean difference of -2.2 mm Hg and a limit of agreement of ±11.16 mm Hg according to Bland-Altman analysis. Significant equivalence between catheter-measured and simulated pressure gradients during stress was found within the study cohort (two 1-sided tests of equivalence with a noninferiority margin of 5.0 mm Hg, 33.6±10.33 versus 31.5±11.15 mm Hg, P=0.021). CONCLUSIONS: The developed reduced-order model can instantly predict dobutamine-induced hemodynamic changes with accuracy equivalent to heart catheterization in patients with aortic coarctation. The method is easy to use, available as a web-based calculator, and provides a promising alternative to conventional stress testing in the clinical routine. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02591940.


Assuntos
Coartação Aórtica/diagnóstico , Cateterismo Cardíaco/métodos , Dobutamina/farmacologia , Teste de Esforço/métodos , Hemodinâmica/fisiologia , Adolescente , Adulto , Coartação Aórtica/fisiopatologia , Cardiotônicos/farmacologia , Criança , Feminino , Humanos , Masculino , Estudos Prospectivos , Adulto Jovem
10.
Sci Rep ; 10(1): 18894, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144605

RESUMO

In patients with aortic coarctation it would be desirable to assess pressure gradients as well as information about blood flow profiles at rest and during exercise. We aimed to assess the hemodynamic responses to physical exercise by combining MRI-ergometry with computational fluid dynamics (CFD). MRI was performed on 20 patients with aortic coarctation (13 men, 7 women, mean age 21.5 ± 13.7 years) at rest and during ergometry. Peak systolic pressure gradients, wall shear stress (WSS), secondary flow degree (SFD) and normalized flow displacement (NFD) were calculated using CFD. Stroke volume was determined based on MRI. On average, the pressure gradient was 18.0 ± 16.6 mmHg at rest and increased to 28.5 ± 22.6 mmHg (p < 0.001) during exercise. A significant increase in cardiac index was observed (p < 0.001), which was mainly driven by an increase in heart rate (p < 0.001). WSS significantly increased during exercise (p = 0.006), whereas SFD and NFD remained unchanged. The combination of MRI-ergometry with CFD allows assessing pressure gradients as well as flow profiles during physical exercise. This concept has the potential to serve as an alternative to cardiac catheterization with pharmacological stress testing and provides hemodynamic information valuable for studying the pathophysiology of aortic coarctation.


Assuntos
Coartação Aórtica/fisiopatologia , Teste de Esforço/métodos , Adolescente , Adulto , Coartação Aórtica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Criança , Ergometria , Estudos de Viabilidade , Feminino , Frequência Cardíaca , Hemodinâmica , Humanos , Hidrodinâmica , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Estresse Mecânico , Adulto Jovem
11.
NPJ Digit Med ; 3: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32665977

RESUMO

Wrist-worn devices with heart rate monitoring have become increasingly popular. Although current guidelines advise to consider clinical symptoms and exercise tolerance during decision-making in heart disease, it remains unknown to which extent wearables can help to determine such functional capacity measures. In clinical settings, the 6-minute walk test has become a standardized diagnostic and prognostic marker. We aimed to explore, whether 6-minute walk distances can be predicted by wrist-worn devices in patients with different stages of mitral and aortic valve disease. A total of n = 107 sensor datasets with 1,019,748 min of recordings were analysed. Based on heart rate recordings and literature information, activity levels were determined and compared to results from a 6-minute walk test. The percentage of time spent in moderate activity was a predictor for the achievement of gender, age and body mass index-specific 6-minute walk distances (p < 0.001; R 2 = 0.48). The uncertainty of these predictions is demonstrated.

12.
Front Neurol ; 11: 303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411079

RESUMO

Backgrounds: We have aimed to establish nerve ultrasound reference data in 8 to 17-year-old children and adolescents and to compare those data to younger children, adults, and age-matched children with polyneuropathies. Methods: High-resolution ultrasounds of the nerves were performed in 117 healthy children and adolescents at 20 predefined landmarks in the neck and the extremities of both sides. Mean values, side-to-side differences and intraneural ratios, as well as upper limits have been calculated. In a second step, a comparison between 25 children and adolescents of the same age range with proven hereditary and acquired neuropathies and lysosomal storage diseases has been carried out. Results: Nerve growth correlates significantly with age and reaches adult values at the age of around 15 years. The influence of body mass index and gender is negligible at most segments. By the use of age-specific upper limits, nerve enlargement could be seen in distinct types of neuropathies, particularly in demyelinating hereditary and inflammatory types, which is comparable to findings in adults, but also in rare lysosomal storage diseases. Conclusion: Nerve size correlates with age during childhood and reaches a climax in younger adults. Age-matched reference data are inevitable to differ between hypertrophic and non-hypertrophic nerve damage, e.g., in neuropathies.

13.
Clin Neurophysiol ; 131(4): 859-865, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066105

RESUMO

OBJECTIVE: We examined selected peripheral and spinal nerves of children aged between two and seven years. METHOD: High resolution ultrasound was performed in 116 children (2-7 years of age) at 19 predefined landmarks of median, ulnar, tibial, fibular, sural and radial nerves, the vagus as well as cervical spinal nerve 5 and 6. Further, side-to-side measuring and grey-scale analysis was done at selected nerve sites. RESULTS: Nerves of children were on average smaller than those of adults. Nerve growth correlates significantly with age in all nerves, the mean values were similar in the age of two to four years and five to seven years. Body mass index (BMI) and gender showed moderate effect at some nerve sites, however not uniformly in all. A side-to-side difference of up to 30% in median, and up to 20% in tibial nerve can occur in healthy individuals. Grey-scale analysis for echointensity has been performed in median, ulnar and tibial nerves. CONCLUSION: Nerve size increases with age, BMI and gender have moderate effect. A side-to-side-difference of up to 30% can exist. SIGNIFICANCE: Reference values of nerve cross-sectional area, side-to-side-difference and echo intensity are necessary to detect nerve pathology in children as well as in adults.


Assuntos
Nervos Periféricos/diagnóstico por imagem , Nervos Espinhais/diagnóstico por imagem , Ultrassonografia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Valores de Referência
14.
Brain Stimul ; 13(1): 80-88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31405790

RESUMO

BACKGROUND: Non-invasive direct current stimulation (DCS) of the brain induces functional plasticity in vitro and facilitates motor learning across species. The effect of DCS on structural synaptic plasticity is currently unknown. OBJECTIVE: This study addresses the effects and the underlying mechanisms of anodal DCS on structural plasticity and morphology of dendritic spines in the sensorimotor cortex (M1/S1). METHODS: A DCS electrode setup was combined with a chronic cranial window over M1/S1 in transgenic Thy1-GFP mice, to allow for in vivo 2-photon microscopy and simultaneous DCS. Contralateral electrical forepaw stimulation (eFS) was used to mimic the second synapse specific input, a previously shown requirement to induce functional plasticity by DCS. Changes in spine density and spine morphology were compared between DCS/eFS and sham, as well as two control conditions (sham-DCS/eFS, DCS/sham-eFS). Furthermore, the role of BDNF for stimulation-induced changes in spine density was assessed in heterozygous Thy1-GFP x BDNF+/- mice. RESULTS: Combined DCS/eFS rapidly increased spine density during stimulation and changes outlasted the intervention for 24 h. This effect was due to increased survival of original spines and a preferential formation of new spines after intervention. The latter were morphologically characterized by larger head sizes. The DCS-induced spine density increase was absent in mice with reduced BDNF expression. CONCLUSION: Previous findings of DCS-induced functional synaptic plasticity can be extended to structural plasticity in M1/S1 that similarly depends on a second synaptic input (eFS) and requires physiological BDNF expression. These findings show considerable parallels to motor learning-induced M1 spine dynamics.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Plasticidade Neuronal/fisiologia , Córtex Sensório-Motor/fisiologia , Sinapses/metabolismo , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Sinapses/genética
15.
Front Neurol ; 10: 969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572288

RESUMO

Introduction: Acute stroke care delivered by interdisciplinary teams is time-sensitive. Simulation-based team training is a promising tool to improve team performance in medical operations. It has the potential to improve process times, team communication, patient safety, and staff satisfaction. We aim to assess whether a multi-level approach consisting of a stringent workflow revision based on peer-to-peer review and 2-3 one-day in situ simulation trainings can improve acute stroke care processing times in high volume neurocenters within a 6 months period. Methods and Analysis: The trial is being carried out in a pre-test-post-test design at 7 tertiary care university hospital neurocenters in Germany. The intervention is directed at the interdisciplinary multiprofessional stroke teams. Before and after the intervention, process times of all direct-to-center stroke patients receiving IV thrombolysis (IVT) and/or endovascular therapy (EVT) will be recorded. The primary outcome measure will be the "door-to-needle" time of all consecutive stroke patients directly admitted to the neurocenters who receive IVT. Secondary outcome measures will be intervention-related process times of the fraction of patients undergoing EVT and effects on team communication, perceived patient safety, and staff satisfaction via a staff questionnaire. Interventions: We are applying a multi-level intervention in cooperation with three "STREAM multipliers" from each center. First step is a central meeting of the multipliers at the sponsor's institution with the purposes of algorithm review in a peer-to-peer process that is recorded in a protocol and an introduction to the principles of simulation training and debriefing as well as crew resource management and team communication. Thereafter, the multipliers cooperate with the stroke team trainers from the sponsor's institution to plan and execute 2-3 one-day simulation courses in situ in the emergency department and CT room of the trial centers whereupon they receive teaching materials to perpetuate the trainings. Clinical Trial Registration: STREAM is a registered trial at https://clinicaltrials.gov/ct2/show/NCT03228251.

17.
Front Cardiovasc Med ; 6: 43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024935

RESUMO

Introduction: Exercise testing has become a diagnostic standard in the evaluation and management of heart disease. While different methods of exercise and pharmacological stress testing exist, only little is known about their comparability. We aimed to assess hemodynamic changes during dynamic exercise, isometric exercise, and dobutamine stress testing at different stress intensities in healthy subjects and patients with aortic stenosis (AS) and aortic coarctation (CoA). Methods: A systematic literature search (PROSPERO 2017:CRD42017078608) in MEDLINE of interventional trials was conducted to identify eligible studies providing evidence of changes in hemodynamic parameters under different stress conditions acquired by MRI or echocardiography. A random effects model was used to estimate pooled mean changes in hemodynamics. Results: One hundred and twenty-eight study arms with a total of 3,139 stress-examinations were included. In healthy subjects/(where available) in AS, pooled mean changes (95% CIs) during light dynamic stress were 31.78 (27.82-35.74) bpm in heart rate (HR) and 6.59 (2.58-10.61) ml in stroke volume (SV). Changes during light pharmacological stress were 13.71 (7.87-19.56)/14.0 (9.82-18.18) bpm in HR, and 5.47 (0.3-10.63)/8.0 (3.82-12.18) ml in SV. Changes during light isometric stress were 18.44 (10.74-26.14)/5.0 (-1.17-11.17) bpm in HR and -4.17 (-14.37-6.03)/-4.0 (-16.43-8.43) ml in SV. Changes during moderate dynamic stress were 49.57 (40.03-59.1)/46.45 (42.63-50.27) bpm in HR and 11.64 (5.87-17.42) ml in SV. During moderate pharmacological stress, changes in HR were 42.83 (36.94-48.72)/18.66 (2.38-34.93) bpm and in SV 6.29 (-2.0-14.58)/13.11 (7.99-18.23) ml. During high intensity dynamic stress changes in HR were 89.31 (81.46-97.17)/55.32 (47.31-63.33) bpm and in SV 21.31 (13.42-29.21)/-0.96 (-5.27-3.35) ml. During high pharmacological stress, changes in HR were 53.58 (36.53-70.64)/42.52 (32.77-52.28) bpm, and in SV 0.98 (-9.32-11.27)/14.06 (-1.62-29.74) ml. HR increase and age were inversely correlated at high stress intensities. In CoA, evidence was limited to single studies. Conclusion: This systematic review and meta-analysis presents pooled hemodynamic changes under light, moderate and high intensity exercise and pharmacological stress, while considering the potential influence of age. Despite limited availability of comparative studies, the reference values presented in this review allow estimation of the expected individual range of a circulatory response in healthy individuals and patients with AS and may contribute to future study planning and patient-specific models even when stress testing is contraindicated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA