Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1955): 20211166, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34284632

RESUMO

Histology-based skeletochronology is a widely used approach to determine the age of an individual, and is based on the assumption that temporal cessations or decelerations of bone growth lead to incremental growth marks (GM), reflecting annual cycles. We studied the reliability of histology-based skeletochronology in a variety of extant tetrapods by comparing two different approaches: petrographic ground sections versus stained microtomized sections. Each bone was cut into two corresponding halves at its growth centre in order to apply both approaches to one and the same sample. None of the samples unequivocally revealed the actual age of the specimens, but truly concerning is the fact that the majority of samples even led to conflicting age estimates between the two approaches. Although the microtomized sections tended to yield more GM and thus indicated an older age than the ground sections, the contrary also occurred. Such a pronounced ambiguity in skeletochronological data strongly challenges the value of the respective age determinations for both extant and extinct animals. We conclude that much more research on the fundamental methodological side of skeletochronology-especially regarding the general nature and microscopic recognition of GM-is required.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos , Animais , Reprodutibilidade dos Testes
2.
J Morphol ; 281(7): 754-764, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32427377

RESUMO

Madagascar's endemic ground-dwelling leaf chameleons (Brookesiinae: Brookesia Gray, 1865 + Palleon Glaw, et al., Salamandra, 2013, 49, pp. 237-238) form the sister taxon to all other chameleons (i.e., the Chamaeleoninae). They possess a limited ability of color change, a rather dull coloration, and a nonprehensile tail assisting locomotion in the leaf litter on the forest floor. Most Brookesia species can readily be recognized by peculiar spiky dorsolateral projections ("Rückensäge"), which are caused by an aberrant vertebral structure and might function as body armor to prevent predation. In addition to a pronounced Rückensäge, the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933) exhibits conspicuous, acuminate tubercle scales on the lateral flanks and extremities, thereby considerably enhancing the overall armored appearance. Such structures are exceptional within the Chamaeleonidae and despite an appreciable interest in the integument of chameleons in general, the morphology of these integumentary elements remains shrouded in mystery. Using various conventional and petrographic histological approaches combined with µCT-imaging, we reveal that the tubercle scales consist of osseous, multicusped cores that are embedded within the dermis. Based on this, they consequently can be interpreted as osteoderms, which to the best of our knowledge is the first record of such for the entire Chamaeleonidae and only the second one for the entire clade Iguania. The combination of certain aspects of tissue composition (especially the presence of large, interconnected, and marrow-filled cavities) together with the precise location within the dermis (being completely enveloped by the stratum superficiale), however, discriminate the osteoderms of B. perarmata from those known for all other lepidosaurs.


Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Lagartos/anatomia & histologia , Pele/anatomia & histologia , Pele/diagnóstico por imagem , Microtomografia por Raio-X , Animais , Imageamento Tridimensional , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA