Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Am Chem Soc ; 146(11): 7487-7497, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466925

RESUMO

Upconverting nanoparticles (UCNPs) exhibit unique nonlinear optical properties that can be harnessed in microscopy, sensing, and photonics. However, forming high-resolution nano- and micropatterns of UCNPs with large packing fractions is still challenging. Additionally, there is limited understanding of how nanoparticle patterning chemistries are affected by the particle size. Here, we explore direct patterning chemistries for 6-18 nm Tm3+-, Yb3+/Tm3+-, and Yb3+/Er3+-based UCNPs using ligands that form either new ionic linkages or covalent bonds between UCNPs under ultraviolet (UV), electron-beam (e-beam), and near-infrared (NIR) exposure. We study the effect of UCNP size on these patterning approaches and find that 6 nm UCNPs can be patterned with compact ionic-based ligands. In contrast, patterning larger UCNPs requires long-chain, cross-linkable ligands that provide sufficient interparticle spacing to prevent irreversible aggregation upon film casting. Compared to approaches that use a cross-linkable liquid monomer, our patterning method limits the cross-linking reaction to the ligands bound on UCNPs deposited as a thin film. This highly localized photo-/electron-initiated chemistry enables the fabrication of densely packed UCNP patterns with high resolutions (∼1 µm with UV and NIR exposure; <100 nm with e-beam). Our upconversion NIR lithography approach demonstrates the potential to use inexpensive continuous-wave lasers for high-resolution 2D and 3D lithography of colloidal materials. The deposited UCNP patterns retain their upconverting, avalanching, and photoswitching behaviors, which can be exploited in patterned optical devices for next-generation UCNP applications.

2.
Nat Commun ; 15(1): 1543, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378789

RESUMO

Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.

3.
Nano Lett ; 24(7): 2149-2156, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329715

RESUMO

The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.

4.
ACS Nano ; 18(5): 4118-4130, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261768

RESUMO

Waveguides play a key role in the implementation of on-chip optical elements and, therefore, lie at the heart of integrated photonics. To add the functionalities of layered materials to existing technologies, dedicated fabrication protocols are required. Here, we build on laser writing to pattern grating structures into bulk noncentrosymmetric transition metal dichalcogenides with grooves as sharp as 250 nm. Using thin flakes of 3R-MoS2 that act as waveguides for near-infrared light, we demonstrate the functionality of the grating couplers with two complementary experiments: first, nano-optical imaging is used to visualize transverse electric and magnetic modes, whose directional outcoupling is captured by finite element simulations. Second, waveguide second-harmonic generation is demonstrated by grating-coupling femtosecond pulses into the slabs in which the radiation partially undergoes frequency doubling throughout the propagation. Our work provides a straightforward strategy for laser patterning of van der Waals crystals, demonstrates the feasibility of compact frequency converters, and examines the tuning knobs that enable optimized coupling into layered waveguides.

5.
Light Sci Appl ; 13(1): 1, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161209

RESUMO

Excitons, bound electron-hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E-Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E-Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E-Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E-P modes. These E-Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E-Ps to lower energy E-Ps. Finally, we also demonstrate that E-Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E-Ps opening new opportunities towards their manipulation for polaritonic devices.

6.
Nano Lett ; 23(15): 7100-7106, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37471584

RESUMO

Photon avalanching nanoparticles (ANPs) exhibit extremely nonlinear upconverted emission valuable for subdiffraction imaging, nanoscale sensing, and optical computing. Avalanching has been demonstrated with Tm3+-, Pr3+-, or Nd3+-doped nanocrystals, but their emission is limited to a few wavelengths and materials. Here, we utilize Gd3+-assisted energy migration to tune the emission wavelengths of Tm3+-sensitized ANPs and generate highly nonlinear emission from Eu3+, Tb3+, Ho3+, and Er3+ ions. The upconversion intensities of these spectrally discrete ANPs scale with nonlinearity factor s = 10-17 under 1064 nm excitation at power densities as low as 7 kW cm-2. This strategy for imprinting avalanche behavior on remote emitters can be extended to fluorophores adjacent to ANPs, as we demonstrate with CdS/CdSe/CdS core/shell/shell quantum dots. ANPs with rationally designed energy transfer networks provide the means to transform conventional linear emitters into a highly nonlinear ones, expanding the use of photon avalanching in biological, chemical, and photonic applications.

7.
Chem Commun (Camb) ; 59(50): 7717-7730, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37199319

RESUMO

Nowadays, as a result of the emergence of low-dimensional hybrid structures, the scientific community is interested in their interfacial carrier dynamics, including charge transfer and energy transfer. By combining the potential of transition metal dichalcogenides (TMDs) and nanocrystals (NCs) with low-dimensional extension, hybrid structures of semiconducting nanoscale matter can lead to fascinating new technological scenarios. Their characteristics make them intriguing candidates for electronic and optoelectronic devices, like transistors or photodetectors, bringing with them challenges but also opportunities. Here, we will review recent research on the combined TMD/NC hybrid system with an emphasis on two major interaction mechanisms: energy transfer and charge transfer. With a focus on the quantum well nature in these hybrid semiconductors, we will briefly highlight state-of-the-art protocols for their structure formation and discuss the interaction mechanisms of energy versus charge transfer, before concluding with a perspective section that highlights novel types of interactions between NCs and TMDs.

8.
Nature ; 618(7967): 951-958, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258675

RESUMO

Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6,7, to targeted pharmacology, optogenetics, and chemical reactivity8. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles6,9 can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-16, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.

9.
Nano Lett ; 23(11): 5070-5075, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37195262

RESUMO

We investigate heterostructures composed of monolayer WSe2 stacked on α-RuCl3 using a combination of Terahertz (THz) and infrared (IR) nanospectroscopy and imaging, scanning tunneling spectroscopy (STS), and photoluminescence (PL). Our observations reveal itinerant carriers in the heterostructure prompted by charge transfer across the WSe2/α-RuCl3 interface. Local STS measurements show the Fermi level is shifted to the valence band edge of WSe2 which is consistent with p-type doping and verified by density functional theory (DFT) calculations. We observe prominent resonances in near-IR nano-optical and PL spectra, which are associated with the A-exciton of WSe2. We identify a concomitant, near total, quenching of the A-exciton resonance in the WSe2/α-RuCl3 heterostructure. Our nano-optical measurements show that the charge-transfer doping vanishes while excitonic resonances exhibit near-total recovery in "nanobubbles", where WSe2 and α-RuCl3 are separated by nanometer distances. Our broadband nanoinfrared inquiry elucidates local electrodynamics of excitons and an electron-hole plasma in the WSe2/α-RuCl3 system.

10.
Nat Commun ; 14(1): 2649, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156799

RESUMO

Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.

11.
Annu Rev Phys Chem ; 74: 415-438, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093661

RESUMO

Upconverting nanoparticles (UCNPs) compose a class of luminescent materials that utilize the unique wavelength-converting properties of lanthanide (Ln) ions for light-harvesting applications, photonics technologies, and biological imaging and sensing experiments. Recent advances in UCNP design have shed light on the properties of local color centers, both intrinsic and controllably induced, within these materials and their potential influence on UCNP photophysics. In this review, we describe fundamental studies of color centers in Ln-based materials, including research into their origins and their roles in observed photodarkening and photobrightening mechanisms. We place particular focus on the new functionalities that are enabled by harnessing the properties of color centers within Ln-doped nanocrystals, illustrated through applications in afterglow-based bioimaging, X-ray detection, all-inorganic nanocrystal photoswitching, and fully rewritable optical patterning and memory.

12.
Nat Mater ; 22(7): 838-843, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36997689

RESUMO

Plasmon polaritons in van der Waals materials hold promise for various photonics applications1-4. The deterministic imprinting of spatial patterns of high carrier density in plasmonic cavities and nanoscale circuitry can enable the realization of advanced nonlinear nanophotonic5 and strong light-matter interaction platforms6. Here we demonstrate an oxidation-activated charge transfer strategy to program ambipolar low-loss graphene plasmonic structures. By covering graphene with transition-metal dichalcogenides and subsequently oxidizing the transition-metal dichalcogenides into transition-metal oxides, we activate charge transfer rooted in the dissimilar work functions between transition-metal oxides and graphene. Nano-infrared imaging reveals ambipolar low-loss plasmon polaritons at the transition-metal-oxide/graphene interfaces. Further, by inserting dielectric van der Waals spacers, we can precisely control the electron and hole densities induced by oxidation-activated charge transfer and achieve plasmons with a near-intrinsic quality factor. Using this strategy, we imprint plasmonic cavities with laterally abrupt doping profiles with nanoscale precision and demonstrate plasmonic whispering-gallery resonators based on suspended graphene encapsulated in transition-metal oxides.


Assuntos
Grafite , Elétrons , Óxidos
13.
Nature ; 613(7942): 71-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600065

RESUMO

The two natural allotropes of carbon, diamond and graphite, are extended networks of sp3-hybridized and sp2-hybridized atoms, respectively1. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C60 that bridges the gulf between molecular and extended carbon materials. Its constituent fullerene subunits arrange hexagonally in a covalently interconnected molecular sheet. We report charge-neutral, purely carbon-based macroscopic crystals that are large enough to be mechanically exfoliated to produce molecularly thin flakes with clean interfaces-a critical requirement for the creation of heterostructures and optoelectronic devices2. The synthesis entails growing single crystals of layered polymeric (Mg4C60)∞ by chemical vapour transport and subsequently removing the magnesium with dilute acid. We explore the thermal conductivity of this material and find it to be much higher than that of molecular C60, which is a consequence of the in-plane covalent bonding. Furthermore, imaging few-layer graphullerene flakes using transmission electron microscopy and near-field nano-photoluminescence spectroscopy reveals the existence of moiré-like superlattices3. More broadly, the synthesis of extended carbon structures by polymerization of molecular precursors charts a clear path to the systematic design of materials for the construction of two-dimensional heterostructures with tunable optoelectronic properties.

14.
Angew Chem Int Ed Engl ; 62(1): e202212549, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377596

RESUMO

Optical applications of lanthanide-doped nanoparticles require materials with low phonon energies to minimize nonradiative relaxation and promote nonlinear processes like upconversion. Heavy halide hosts offer low phonon energies but are challenging to synthesize as nanocrystals. Here, we demonstrate the size-controlled synthesis of low-phonon-energy KPb2 X5 (X=Cl, Br) nanoparticles and the ability to tune nanocrystal phonon energies as low as 128 cm-1 . KPb2 Cl5 nanoparticles are moisture resistant and can be efficiently doped with lighter lanthanides. The low phonon energies of KPb2 X5 nanoparticles promote upconversion luminescence from higher lanthanide excited states and enable highly nonlinear, avalanche-like emission from KPb2 Cl5 : Nd3+ nanoparticles. The realization of nanoparticles with tunable, ultra-low phonon energies facilitates the discovery of nanomaterials with phonon-dependent properties, precisely engineered for applications in nanoscale imaging, sensing, luminescence thermometry and energy conversion.

15.
Sci Adv ; 8(43): eadd6169, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288317

RESUMO

Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.

16.
Nano Lett ; 22(18): 7401-7407, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36122409

RESUMO

The optical properties of transition-metal dichalcogenides have previously been modified at the nanoscale by using mechanical and electrical nanostructuring. However, a clear experimental picture relating the local electronic structure with emission properties in such structures has so far been lacking. Here, we use a combination of scanning tunneling microscopy (STM) and near-field photoluminescence (nano-PL) to probe the electronic and optical properties of single nanobubbles in bilayer heterostructures of WSe2 on MoSe2. We show from tunneling spectroscopy that there are electronic states deeply localized in the gap at the edge of such bubbles, which are independent of the presence of chemical defects in the layers. We also show a significant change in the local band gap on the bubble, with a continuous evolution to the edge of the bubble over a length scale of ∼20 nm. Nano-PL measurements observe a continuous redshift of the interlayer exciton on entering the bubble, in agreement with the band-to-band transitions measured by STM. We use self-consistent Schrödinger-Poisson simulations to capture the essence of the experimental results and find that strong doping in the bubble region is a key ingredient to achieving the observed localized states, together with mechanical strain.

17.
Nature ; 601(7893): 360-365, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046599

RESUMO

Inorganic-organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties1. This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe radiation sensitivity, interfering with the standard techniques of single-crystal X-ray diffraction2,3 and electron microdiffraction4-11. Here we demonstrate small-molecule serial femtosecond X-ray crystallography (smSFX) for the determination of material crystal structures from microcrystals. We subjected microcrystalline suspensions to X-ray free-electron laser radiation12,13 and obtained thousands of randomly oriented diffraction patterns. We determined unit cells by aggregating spot-finding results into high-resolution powder diffractograms. After indexing the sparse serial patterns by a graph theory approach14, the resulting datasets can be solved and refined using standard tools for single-crystal diffraction data15-17. We describe the ab initio structure solutions of mithrene (AgSePh)18-20, thiorene (AgSPh) and tethrene (AgTePh), of which the latter two were previously unknown structures. In thiorene, we identify a geometric change in the silver-silver bonding network that is linked to its divergent optoelectronic properties20. We demonstrate that smSFX can be applied as a general technique for structure determination of beam-sensitive microcrystalline materials at near-ambient temperature and pressure.


Assuntos
Elétrons , Prata , Cristalografia por Raios X , Lasers , Difração de Raios X
18.
Mater Horiz ; 8(1): 197-208, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821298

RESUMO

Two-dimensional (2D) excitons arise from electron-hole confinement along one spatial dimension. Such excitations are often described in terms of Frenkel or Wannier limits according to the degree of exciton spatial localization and the surrounding dielectric environment. In hybrid material systems, such as the 2D perovskites, the complex underlying interactions lead to excitons of an intermediate nature, whose description lies somewhere between the two limits, and a better physical description is needed. Here, we explore the photophysics of a tuneable materials platform where covalently bonded metal-chalcogenide layers are spaced by organic ligands that provide confinement barriers for charge carriers in the inorganic layer. We consider self-assembled, layered bulk silver benzeneselenolate, [AgSePh]∞, and use a combination of transient absorption spectroscopy and ab initio GW plus Bethe-Salpeter equation calculations. We demonstrate that in this non-polar dielectric environment, strongly anisotropic excitons dominate the optical transitions of [AgSePh]∞. We find that the transient absorption measurements at room temperature can be understood in terms of low-lying excitons confined to the AgSe planes with in-plane anisotropy, featuring anisotropic absorption and emission. Finally, we present a pathway to control the exciton behaviour by changing the chalcogen in the material lattice. Our studies unveil unexpected excitonic anisotropies in an unexplored class of tuneable, yet air-stable, hybrid quantum wells, offering design principles for the engineering of an ordered, yet complex dielectric environment and its effect on the excitonic phenomena in such emerging materials.

19.
Nano Lett ; 21(23): 9930-9938, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797671

RESUMO

Recent advances in emerging atomically thin transition metal dichalcogenide semiconductors with strong light-matter interactions and tunable optical properties provide novel approaches for realizing new material functionalities. Coupling two-dimensional semiconductors with all-dielectric resonant nanostructures represents an especially attractive opportunity for manipulating optical properties in both the near-field and far-field regimes. Here, by integrating single-layer WSe2 and titanium oxide (TiO2) dielectric metasurfaces with toroidal resonances, we realized robust exciton emission enhancement over 1 order of magnitude at both room and low temperatures. Furthermore, we could control exciton dynamics and annihilation by using temperature to tailor the spectral overlap of excitonic and toroidal resonances, allowing us to selectively enhance the Purcell effect. Our results provide rich physical insight into the strong light-matter interactions in single-layer TMDs coupled with toroidal dielectric metasurfaces, with important implications for optoelectronics and photonics applications.

20.
ACS Appl Mater Interfaces ; 13(37): 44556-44567, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498862

RESUMO

Localized photothermal therapy (PTT) has been demonstrated to be a promising method of combating cancer, that additionally synergistically enhances other treatment modalities such as photodynamic therapy or chemotherapy. PTT exploits nanoparticles (called nanoheaters), that upon proper biofunctionalization may target cancerous tissues, and under light stimulation may convert the energy of photons to heat, leading to local overheating and treatment of cancerous cells. Despite extensive work, there is, however, no agreement on how to accurately and quantitatively compare light-to-heat conversion efficiency (ηQ) and rank the nanoheating performances of various groups of nanomaterials. This disagreement is highly problematic because the obtained ηQ values, measured with various methods, differ significantly for similar nanomaterials. In this work, we experimentally review existing optical setups, methods, and physical models used to evaluate ηQ. In order to draw a binding conclusion, we cross-check and critically evaluate the same Au@SiO2 sample in various experimental conditions. This critical study let us additionally compare and understand the influence of the other experimental factors, such as stirring, data recording and analysis, and assumptions on the effective mass of the system, in order to determine ηQ in a most straightforward and reproducible way. Our goal is therefore to contribute to the understanding, standardization, and reliable evaluation of ηQ measurements, aiming to accurately rank various nanoheater platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA