Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335928

RESUMO

MOTIVATION: The accurate prediction of how mutations change biophysical properties of proteins or RNA is a major goal in computational biology with tremendous impacts on protein design and genetic variant interpretation. Evolutionary approaches such as coevolution can help solving this issue. RESULTS: We present pycofitness, a standalone Python-based software package for the in silico mutagenesis of protein and RNA sequences. It is based on coevolution and, more specifically, on a popular inverse statistical approach, namely direct coupling analysis by pseudo-likelihood maximization. Its efficient implementation and user-friendly command line interface make it an easy-to-use tool even for researchers with no bioinformatics background. To illustrate its strengths, we present three applications in which pycofitness efficiently predicts the deleteriousness of genetic variants and the effect of mutations on protein fitness and thermodynamic stability. AVAILABILITY AND IMPLEMENTATION: https://github.com/KIT-MBS/pycofitness.


Assuntos
RNA , Software , RNA/genética , Sequência de Aminoácidos , Biologia Computacional , Proteínas
3.
Commun Biol ; 6(1): 913, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674020

RESUMO

On the path to full understanding of the structure-function relationship or even design of RNA, structure prediction would offer an intriguing complement to experimental efforts. Any deep learning on RNA structure, however, is hampered by the sparsity of labeled training data. Utilizing the limited data available, we here focus on predicting spatial adjacencies ("contact maps") as a proxy for 3D structure. Our model, BARNACLE, combines the utilization of unlabeled data through self-supervised pre-training and efficient use of the sparse labeled data through an XGBoost classifier. BARNACLE shows a considerable improvement over both the established classical baseline and a deep neural network. In order to demonstrate that our approach can be applied to tasks with similar data constraints, we show that our findings generalize to the related setting of accessible surface area prediction.


Assuntos
Aprendizado Profundo , Thoracica , Animais , Redes Neurais de Computação , RNA/genética , Registros
4.
J Phys Chem B ; 127(16): 3607-3615, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37011021

RESUMO

Recent years have revealed a large number of complex mechanisms and interactions that drive the development of malignant tumors. Tumor evolution is a framework that explains tumor development as a process driven by survival of the fittest, with tumor cells of different properties competing for limited available resources. To predict the evolutionary trajectory of a tumor, knowledge of how cellular properties influence the fitness of a subpopulation in the context of the microenvironment is required and is often inaccessible. Computational multiscale-modeling of tissues enables the observation of the full trajectory of each cell within the tumor environment. Here, we model a 3D spheroid tumor with subcellular resolution. The fitness of individual cells and the evolutionary behavior of the tumor are quantified and linked to cellular and environmental parameters. The fitness of cells is solely influenced by their position in the tumor, which in turn is influenced by the two variable parameters of our model: cell-cell adhesion and cell motility. We observe the influence of nutrient independence and static and dynamically changing nutrient availability on the evolutionary trajectories of heterogeneous tumors in a high-resolution computational model. Regardless of nutrient availability, we find a fitness advantage of low-adhesion cells, which are favorable for tumor invasion. We find that the introduction of nutrient-dependent cell division and death accelerates the evolutionary speed. The evolutionary speed can be increased by fluctuations in nutrients. We identify a distinct frequency domain in which the evolutionary speed increases significantly over a tumor with constant nutrient supply. The findings suggest that an unstable supply of nutrients can accelerate tumor evolution and, thus, the transition to malignancy.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Simulação por Computador , Movimento Celular , Nutrientes , Microambiente Tumoral
5.
J Am Chem Soc ; 145(17): 9571-9583, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37062072

RESUMO

A hallmark of Huntington's disease (HD) is a prolonged polyglutamine sequence in the huntingtin protein and, correspondingly, an expanded cytosine, adenine, and guanine (CAG) triplet repeat region in the mRNA. A majority of studies investigating disease pathology were concerned with toxic huntingtin protein, but the mRNA moved into focus due to its recruitment to RNA foci and emerging novel therapeutic approaches targeting the mRNA. A hallmark of CAG-RNA is that it forms a stable hairpin in vitro which seems to be crucial for specific protein interactions. Using in-cell folding experiments, we show that the CAG-RNA is largely destabilized in cells compared to dilute buffer solutions but remains folded in the cytoplasm and nucleus. Surprisingly, we found the same folding stability in the nucleoplasm and in nuclear speckles under physiological conditions suggesting that CAG-RNA does not undergo a conformational transition upon recruitment to the nuclear speckles. We found that the metabolite adenosine triphosphate (ATP) plays a crucial role in promoting unfolding, enabling its recruitment to nuclear speckles and preserving its mobility. Using in vitro experiments and molecular dynamics simulations, we found that the ATP effects can be attributed to a direct interaction of ATP with the nucleobases of the CAG-RNA rather than ATP acting as "a fuel" for helicase activity. ATP-driven changes in CAG-RNA homeostasis could be disease-relevant since mitochondrial function is affected in HD disease progression leading to a decline in cellular ATP levels.


Assuntos
Trifosfato de Adenosina , Doença de Huntington , Humanos , Salpicos Nucleares , Proteína Huntingtina/metabolismo , Adenina , RNA/metabolismo , RNA Mensageiro , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos
6.
PLoS Comput Biol ; 19(3): e1010471, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996248

RESUMO

Progress continues in the field of cancer biology, yet much remains to be unveiled regarding the mechanisms of cancer invasion. In particular, complex biophysical mechanisms enable a tumor to remodel the surrounding extracellular matrix (ECM), allowing cells to invade alone or collectively. Tumor spheroids cultured in collagen represent a simplified, reproducible 3D model system, which is sufficiently complex to recapitulate the evolving organization of cells and interaction with the ECM that occur during invasion. Recent experimental approaches enable high resolution imaging and quantification of the internal structure of invading tumor spheroids. Concurrently, computational modeling enables simulations of complex multicellular aggregates based on first principles. The comparison between real and simulated spheroids represents a way to fully exploit both data sources, but remains a challenge. We hypothesize that comparing any two spheroids requires first the extraction of basic features from the raw data, and second the definition of key metrics to match such features. Here, we present a novel method to compare spatial features of spheroids in 3D. To do so, we define and extract features from spheroid point cloud data, which we simulated using Cells in Silico (CiS), a high-performance framework for large-scale tissue modeling previously developed by us. We then define metrics to compare features between individual spheroids, and combine all metrics into an overall deviation score. Finally, we use our features to compare experimental data on invading spheroids in increasing collagen densities. We propose that our approach represents the basis for defining improved metrics to compare large 3D data sets. Moving forward, this approach will enable the detailed analysis of spheroids of any origin, one application of which is informing in silico spheroids based on their in vitro counterparts. This will enable both basic and applied researchers to close the loop between modeling and experiments in cancer research.


Assuntos
Neoplasias Experimentais , Neoplasias , Animais , Esferoides Celulares , Colágeno/química , Matriz Extracelular
7.
Chemistry ; 29(23): e202203967, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36799129

RESUMO

The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.


Assuntos
Neoplasias Colorretais , Pirazóis , Humanos , Pirazóis/química , Pirimidinas/farmacologia , Pirimidinas/química , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
8.
J Chem Phys ; 156(14): 144102, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428380

RESUMO

Despite the incredible progress of experimental techniques, protein structure determination still remains a challenging task. Due to the rapid improvements of computer technology, simulations are often used to complement or interpret experimental data, particularly for sparse or low-resolution data. Many such in silico methods allow us to obtain highly accurate models of a protein structure either de novo or via refinement of a physical model with experimental restraints. One crucial question is how to select a representative member or ensemble out of the vast number of computationally generated structures. Here, we introduce such a method. As a representative task, we add co-evolutionary contact pairs as distance restraints to a physical force field and want to select a good characterization of the resulting native-like ensemble. To generate large ensembles, we run replica-exchange molecular dynamics (REMD) on five mid-sized test proteins and over a wide temperature range. High temperatures allow overcoming energetic barriers while low temperatures perform local searches of native-like conformations. The integrated bias is based on co-evolutionary contact pairs derived from a deep residual neural network to guide the simulation toward native-like conformations. We shortly compare and discuss the achieved model precision of contact-guided REMD for mid-sized proteins. Finally, we discuss four robust ensemble-selection algorithms in great detail, which are capable to extract the representative structure models with a high certainty. To assess the performance of the selection algorithms, we exemplarily mimic a "blind scenario," i.e., where the target structure is unknown, and select a representative structural ensemble of native-like folds.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Algoritmos , Conformação Molecular , Conformação Proteica , Proteínas/química
9.
Nucleic Acids Res ; 49(22): 12661-12672, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871451

RESUMO

Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase prediction accuracy. Unfortunately, the same ML methods cannot readily be applied to RNA as they rely on large structural datasets only available for proteins. Here, we demonstrate how the available smaller data for RNA can be used to improve prediction of RNA contact maps. We introduce an algorithm called CoCoNet that is based on a combination of a Coevolutionary model and a shallow Convolutional Neural Network. Despite its simplicity and the small number of trained parameters, the method boosts the positive predictive value (PPV) of predicted contacts by about 70% with respect to DCA as tested by cross-validation of about eighty RNA structures. However, the direct inclusion of the CoCoNet contacts in 3D modeling tools does not result in a proportional increase of the 3D RNA structure prediction accuracy. Therefore, we suggest that the field develops, in addition to contact PPV, metrics which estimate the expected impact for 3D structure modeling tools better. CoCoNet is freely available and can be found at https://github.com/KIT-MBS/coconet.


Assuntos
Redes Neurais de Computação , RNA/química , Algoritmos , Modelos Moleculares , Conformação de Ácido Nucleico , Riboswitch
10.
J Chem Phys ; 155(10): 104114, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525829

RESUMO

In this paper, we present a fast and adaptive correlation guided enhanced sampling method (CORE-MD II). The CORE-MD II technique relies, in part, on partitioning of the entire pathway into short trajectories that we refer to as instances. The sampling within each instance is accelerated by adaptive path-dependent metadynamics simulations. The second part of this approach involves kinetic Monte Carlo (kMC) sampling between the different states that have been accessed during each instance. Through the combination of the partition of the total simulation into short non-equilibrium simulations and the kMC sampling, the CORE-MD II method is capable of sampling protein folding without any a priori definitions of reaction pathways and additional parameters. In the validation simulations, we applied the CORE-MD II on the dialanine peptide and the folding of two peptides: TrpCage and TrpZip2. In a comparison with long time equilibrium Molecular Dynamics (MD), 1 µs replica exchange MD (REMD), and CORE-MD I simulations, we find that the level of convergence of the CORE-MD II method is improved by a factor of 8.8, while the CORE-MD II method reaches acceleration factors of ∼120. In the CORE-MD II simulation of TrpZip2, we observe the formation of the native state in contrast to the REMD and the CORE-MD I simulations. The method is broadly applicable for MD simulations and is not restricted to simulations of protein folding or even biomolecules but also applicable to simulations of protein aggregation, protein signaling, or even materials science simulations.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Cinética , Método de Monte Carlo , Conformação Proteica
11.
Sensors (Basel) ; 21(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208740

RESUMO

Inspired by the modular architecture of natural signaling proteins, ligand binding proteins are equipped with two fluorescent proteins (FPs) in order to obtain Förster resonance energy transfer (FRET)-based biosensors. Here, we investigated a glucose sensor where the donor and acceptor FPs were attached to a glucose binding protein using a variety of different linker sequences. For three resulting sensor constructs the corresponding glucose induced conformational changes were measured by small angle X-ray scattering (SAXS) and compared to recently published single molecule FRET results (Höfig et al., ACS Sensors, 2018). For one construct which exhibits a high change in energy transfer and a large change of the radius of gyration upon ligand binding, we performed coarse-grained molecular dynamics simulations for the ligand-free and the ligand-bound state. Our analysis indicates that a carefully designed attachment of the donor FP is crucial for the proper transfer of the glucose induced conformational change of the glucose binding protein into a well pronounced FRET signal change as measured in this sensor construct. Since the other FP (acceptor) does not experience such a glucose induced alteration, it becomes apparent that only one of the FPs needs to have a well-adjusted attachment to the glucose binding protein.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
J Mol Biol ; 433(7): 166859, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539884

RESUMO

Icosahedral viral capsids assemble with high fidelity from a large number of identical buildings blocks. The mechanisms that enable individual capsid proteins to form stable oligomeric units (capsomers) while affording structural adaptability required for further assembly into capsids are mostly unknown. Understanding these mechanisms requires knowledge of the capsomers' dynamics, especially for viruses where no additional helper proteins are needed during capsid assembly like for the Mavirus virophage that despite its complexity (triangulation number T = 27) can assemble from its major capsid protein (MCP) alone. This protein forms the basic building block of the capsid namely a trimer (MCP3) of double-jelly roll protomers with highly intertwined N-terminal arms of each protomer wrapping around the other two at the base of the capsomer, secured by a clasp that is formed by part of the C-terminus. Probing the dynamics of the capsomer with HDX mass spectrometry we observed differences in conformational flexibility between functional elements of the MCP trimer. While the N-terminal arm and clasp regions show above average deuterium incorporation, the two jelly-roll units in each protomer also differ in their structural plasticity, which might be needed for efficient assembly. Assessing the role of the N-terminal arm in maintaining capsomer stability showed that its detachment is required for capsomer dissociation, constituting a barrier towards capsomer monomerisation. Surprisingly, capsomer dissociation was irreversible since it was followed by a global structural rearrangement of the protomers as indicated by computational studies showing a rearrangement of the N-terminus blocking part of the capsomer forming interface.


Assuntos
Proteínas do Capsídeo/genética , Multimerização Proteica/genética , Montagem de Vírus/genética , Vírus/genética , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Substâncias Macromoleculares/ultraestrutura , Modelos Moleculares , Vírion/genética , Vírion/ultraestrutura , Vírus/ultraestrutura
13.
Adv Mater ; 33(4): e2006434, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33325613

RESUMO

Artificial multicellular systems are gaining importance in the field of tissue engineering and regenerative medicine. Reconstruction of complex tissue architectures in vitro is nevertheless challenging, and methods permitting controllable and high-throughput fabrication of complex multicellular architectures are needed. Here, a facile and high-throughput method is developed based on a tunable droplet-fusion technique, allowing programmed assembly of multiple cell spheroids into complex multicellular architectures. The droplet-fusion technique allows for construction of various multicellular architectures (double-spheroids, multi-spheroids, hetero-spheroids) in a miniaturized high-density array format. As an example of application, the propagation of Wnt signaling is investigated within hetero-spheroids formed from two fused Wnt-releasing and Wnt-reporter cell spheroids. The developed method provides an approach for miniaturized, high-throughput construction of complex 3D multicellular architectures and can be applied for studying various biological processes including cell signaling, cancer invasion, embryogenesis, and neural development.


Assuntos
Técnicas de Cultura de Células/métodos , Esferoides Celulares/citologia , Humanos , Hidrodinâmica
14.
Biophys J ; 120(6): 1001-1010, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32941783

RESUMO

In this article, we investigate the binding processes of a fragment of the coronavirus spike protein receptor binding domain (RBD), the hexapeptide YKYRYL on the angiotensin-converting enzyme 2 (ACE2) receptor, and its inhibitory effect on the binding and activation of the coronavirus-2 spike protein CoV-2 RBD at ACE2. In agreement with an experimental study, we find a high affinity of the hexapeptide to the binding interface between CoV-2 RBD and ACE2, which we investigate using 20 independent equilibrium molecular dynamics (MD) simulations over a total of 1 µs and a 200-ns enhanced correlation guided MD simulation. We then evaluate the effect of the hexapeptide on the assembly process of the CoV-2 RBD to ACE2 in long-time enhanced correlation guided MD simulations. In that set of simulations, we find that CoV-2 RBD does not bind to ACE2 with the binding motif shown in experiments, but it rotates because of an electrostatic repulsion and forms a hydrophobic interface with ACE2. Surprisingly, we observe that the hexapeptide binds to CoV-2 RBD, which has the effect that this protein only weakly attaches to ACE2 so that the activation of CoV-2 RBD might be inhibited in this case. Our results indicate that the hexapeptide might be a possible treatment option that prevents the viral activation through the inhibition of the interaction between ACE2 and CoV-2 RBD.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Peptídeos/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
PLoS One ; 15(11): e0242072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33196676

RESUMO

Proteins are complex biomolecules which perform critical tasks in living organisms. Knowledge of a protein's structure is essential for understanding its physiological function in detail. Despite the incredible progress in experimental techniques, protein structure determination is still expensive, time-consuming, and arduous. That is why computer simulations are often used to complement or interpret experimental data. Here, we explore how in silico protein structure determination based on replica-exchange molecular dynamics (REMD) can benefit from including contact information derived from theoretical and experimental sources, such as direct coupling analysis or NMR spectroscopy. To reflect the influence from erroneous and noisy data we probe how false-positive contacts influence the simulated ensemble. Specifically, we integrate varying numbers of randomly selected native and non-native contacts and explore how such a bias can guide simulations towards the native state. We investigate the number of contacts needed for a significant enrichment of native-like conformations and show the capabilities and limitations of this method. Adhering to a threshold of approximately 75% true-positive contacts within a simulation, we obtain an ensemble with native-like conformations of high quality. We find that contact-guided REMD is capable of delivering physically reasonable models of a protein's structure.


Assuntos
Proteínas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína
16.
BMC Bioinformatics ; 21(1): 436, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023471

RESUMO

BACKGROUND: Discoveries in cellular dynamics and tissue development constantly reshape our understanding of fundamental biological processes such as embryogenesis, wound-healing, and tumorigenesis. High-quality microscopy data and ever-improving understanding of single-cell effects rapidly accelerate new discoveries. Still, many computational models either describe few cells highly detailed or larger cell ensembles and tissues more coarsely. Here, we connect these two scales in a joint theoretical model. RESULTS: We developed a highly parallel version of the cellular Potts model that can be flexibly applied and provides an agent-based model driving cellular events. The model can be modular extended to a multi-model simulation on both scales. Based on the NAStJA framework, a scaling implementation running efficiently on high-performance computing systems was realized. We demonstrate independence of bias in our approach as well as excellent scaling behavior. CONCLUSIONS: Our model scales approximately linear beyond 10,000 cores and thus enables the simulation of large-scale three-dimensional tissues only confined by available computational resources. The strict modular design allows arbitrary models to be configured flexibly and enables applications in a wide range of research questions. Cells in Silico (CiS) can be easily molded to different model assumptions and help push computational scientists to expand their simulations to a new area in tissue simulations. As an example we highlight a 10003 voxel-sized cancerous tissue simulation at sub-cellular resolution.


Assuntos
Células/metabolismo , Simulação por Computador , Especificidade de Órgãos , Transporte Biológico , Morte Celular , Difusão , Modelos Teóricos , Mutação/genética , Interface Usuário-Computador
17.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105720

RESUMO

The ability to crosslink Metal-Organic Frameworks (MOFs) has recently been discovered as a flexible approach towards synthesizing MOF-templated "ideal network polymers". Crosslinking MOFs with rigid cross-linkers would allow the synthesis of crystalline Covalent-Organic Frameworks (COFs) of so far unprecedented flexibility in network topologies, far exceeding the conventional direct COF synthesis approach. However, to date only flexible cross-linkers were used in the MOF crosslinking approach, since a rigid cross-linker would require an ideal fit between the MOF structure and the cross-linker, which is experimentally extremely challenging, making in silico design mandatory. Here, we present an effective geometric method to find an ideal MOF cross-linker pair by employing a high-throughput screening approach. The algorithm considers distances, angles, and arbitrary rotations to optimally match the cross-linker inside the MOF structures. In a second, independent step, using Molecular Dynamics (MD) simulations we quantitatively confirmed all matches provided by the screening. Our approach thus provides a robust and powerful method to identify ideal MOF/Cross-linker combinations, which helped to identify several MOF-to-COF candidate structures by starting from suitable libraries. The algorithms presented here can be extended to other advanced network structures, such as mechanically interlocked materials or molecular weaving and knots.


Assuntos
Estruturas Metalorgânicas/síntese química , Polímeros/química , Bibliotecas de Moléculas Pequenas/síntese química , Algoritmos , Simulação por Computador , Reagentes de Ligações Cruzadas/química , Ensaios de Triagem em Larga Escala , Conformação Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Propriedades de Superfície
18.
J Chem Phys ; 153(8): 084114, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872878

RESUMO

We present an enhanced Molecular Dynamics (MD) simulation method, which is free from the requirement of a priori structural information of the system. The technique is capable of folding proteins with very low computational effort and requires only an energy parameter. The path correlated MD (CORE-MD) method uses the autocorrelation of the path integral over the reduced action and propagates the system along the history dependent path correlation. We validate the new technique in simulations of the conformational landscapes of dialanine and the TrpCage mini-peptide. We find that the novel method accelerates the sampling by three orders of magnitude and observe convergence of the conformational sampling in both cases. We conclude that the new method is broadly applicable for the enhanced sampling in MD simulations. The CORE-MD algorithm reaches a high accuracy compared with long time equilibrium MD simulations.


Assuntos
Dipeptídeos/química , Modelos Químicos , Simulação de Dinâmica Molecular , Peptídeos/química , Algoritmos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
19.
Histochem Cell Biol ; 154(5): 463-480, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32488346

RESUMO

The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.


Assuntos
Caderinas/metabolismo , Mesoderma/metabolismo , Peixe-Zebra/embriologia , Animais , Caderinas/genética , Endocitose , Células HeLa , Humanos , Mesoderma/citologia , Mutação , Células Tumorais Cultivadas
20.
PLoS Comput Biol ; 16(6): e1007417, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579554

RESUMO

During embryogenesis, morphogens form a concentration gradient in responsive tissue, which is then translated into a spatial cellular pattern. The mechanisms by which morphogens spread through a tissue to establish such a morphogenetic field remain elusive. Here, we investigate by mutually complementary simulations and in vivo experiments how Wnt morphogen transport by cytonemes differs from typically assumed diffusion-based transport for patterning of highly dynamic tissue such as the neural plate in zebrafish. Stochasticity strongly influences fate acquisition at the single cell level and results in fluctuating boundaries between pattern regions. Stable patterning can be achieved by sorting through concentration dependent cell migration and apoptosis, independent of the morphogen transport mechanism. We show that Wnt transport by cytonemes achieves distinct Wnt thresholds for the brain primordia earlier compared with diffusion-based transport. We conclude that a cytoneme-mediated morphogen transport together with directed cell sorting is a potentially favored mechanism to establish morphogen gradients in rapidly expanding developmental systems.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Vertebrados/embriologia , Proteínas Wnt/fisiologia , Animais , Apoptose , Encéfalo/embriologia , Linhagem da Célula , Movimento Celular , Biologia Computacional , Simulação por Computador , Desenvolvimento Embrionário , Crista Neural/embriologia , Placa Neural/embriologia , Transporte Proteico , Transdução de Sinais , Software , Processos Estocásticos , Peixe-Zebra/embriologia , beta Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA