Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9275, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654130

RESUMO

Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification. However, while over 1600 TFs have been described in the human genome, only ~ 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf diScovery), a framework to generate and systematically investigate the potential of de novo TF motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early embryonic development example dataset, and is able to analyze and uncover TF activity in organisms lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC-seq dataset in zebrafish which covers different cell types during hematopoiesis.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Motivos de Nucleotídeos , Fatores de Transcrição , Peixe-Zebra , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Humanos , Sítios de Ligação , Ligação Proteica , Pegada de DNA/métodos , Biologia Computacional/métodos , Cromatina/metabolismo , Cromatina/genética
2.
Comput Struct Biotechnol J ; 20: 4040-4051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983231

RESUMO

Cooperativity between transcription factors is important to regulate target gene expression. In particular, the binding grammar of TFs in relation to each other, as well as in the context of other genomic elements, is crucial for TF functionality. However, tools to easily uncover co-occurrence between DNA-binding proteins, and investigate the regulatory modules of TFs, are limited. Here we present TF-COMB (Transcription Factor Co-Occurrence using Market Basket analysis) - a tool to investigate co-occurring TFs and binding grammar within regulatory regions. We found that TF-COMB can accurately identify known co-occurring TFs from ChIP-seq data, as well as uncover preferential localization to other genomic elements. With the use of ATAC-seq footprinting and TF motif locations, we found that TFs exhibit both preferred orientation and distance in relation to each other, and that these are biologically significant. Finally, we extended the analysis to not only investigate individual TF pairs, but also TF pairs in the context of networks, which enabled the investigation of TF complexes and TF hubs. In conclusion, TF-COMB is a flexible tool to investigate various aspects of TF binding grammar.

3.
Nat Commun ; 11(1): 4267, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848148

RESUMO

While footprinting analysis of ATAC-seq data can theoretically enable investigation of transcription factor (TF) binding, the lack of a computational tool able to conduct different levels of footprinting analysis has so-far hindered the widespread application of this method. Here we present TOBIAS, a comprehensive, accurate, and fast footprinting framework enabling genome-wide investigation of TF binding dynamics for hundreds of TFs simultaneously. We validate TOBIAS using paired ATAC-seq and ChIP-seq data, and find that TOBIAS outperforms existing methods for bias correction and footprinting. As a proof-of-concept, we illustrate how TOBIAS can unveil complex TF dynamics during zygotic genome activation in both humans and mice, and propose how zygotic Dux activates cascades of TFs, binds to repeat elements and induces expression of novel genetic elements.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Fatores de Transcrição/metabolismo , Ativação Transcricional , Zigoto/metabolismo , Animais , Sítios de Ligação/genética , Desenvolvimento Embrionário/genética , Epigênese Genética , Feminino , Genoma Humano , Proteínas de Homeodomínio/metabolismo , Humanos , Cinética , Camundongos , Regiões Promotoras Genéticas , Estudo de Prova de Conceito , Ligação Proteica/genética , Especificidade da Espécie
4.
Bioinformatics ; 35(6): 1055-1057, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30535135

RESUMO

MOTIVATION: High throughput (HT) screens in the omics field are typically analyzed by automated pipelines that generate static visualizations and comprehensive spreadsheet data for scientists. However, exploratory and hypothesis driven data analysis are key aspects of the understanding of biological systems, both generating extensive need for customized and dynamic visualization. RESULTS: Here we describe WIlsON, an interactive workbench for analysis and visualization of multi-omics data. It is primarily intended to empower screening platforms to offer access to pre-calculated HT screen results to the non-computational scientist. Facilitated by an open file format, WIlsON supports all types of omics screens, serves results via a web-based dashboard, and enables end users to perform analyses and generate publication-ready plots. AVAILABILITY AND IMPLEMENTATION: We implemented WIlsON in R with a focus on extensibility using the modular Shiny and Plotly frameworks. A demo of the interactive workbench without limitations may be accessed at http://loosolab.mpi-bn.mpg.de. A standalone Docker container as well as the source code of WIlsON are freely available from our Docker hub https://hub.docker. com/r/loosolab/wilson, CRAN https://cran.r-project.org/web/packages/wilson/, and GitHub repository https://github.molgen.mpg.de/loosolab/wilson-apps, respectively.


Assuntos
Internet , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA