Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Alzheimers Dement ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470175

RESUMO

INTRODUCTION: While the influence of cross-sectional ß-amyloid (Aß) on longitudinal changes in cognition is well established, longitudinal change-on-change between Aß and cognition is less explored. METHODS: A series of bivariate latent change score models (LCSM) examined the relationship between changes in 11C-Pittsburgh Compound-B (PiB) positron emission tomography (PET) and the Preclinical Alzheimer's Cognitive Composite-5 (PACC-5) while adjusting for covariates, including cross-sectional medial temporal lobe (MTL) tau-PET burden. We selected 352 clinically normal older participants with up to 9 years of PiB-PET and PACC-5 data from the Harvard Aging Brain Study (HABS). RESULTS: Aß accumulation was associated with subsequent cognitive decline beyond the effects of cross-sectional Aß burden. Within this model including covariates such as age, sex, and apolipoprotein ε4 (APOEε4) status, we found no evidence supporting previously published associations between cross-sectional tau-PET and cognitive intercept/slope. DISCUSSION: Short-term Aß changes are significantly associated with cognitive decline in clinically normal older adults and may eclipse the effect of cross-sectional Aß and MTL tau. HIGHLIGHTS: Aß accumulation is associated with subsequent cognitive decline. High Aß burden is not the sole metric signaling impending cognitive decline. Contrary to prior work, MTL tau-PET and cognition were not associated in our models. Models of bivariate latent Aß and cognitive change may eclipse the effects of MTL tau.

2.
medRxiv ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39228697

RESUMO

Cognitive resilience describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals. We demonstrate that this approach makes specific, uncontrollable assumptions and likely leads to biased and erroneous resilience estimates. We propose an alternative strategy which overcomes the standard approach's limitations using machine learning principles. Our proposed approach makes fewer assumptions about the data and construct to be measured and achieves better estimation accuracy on simulated ground-truth data.

3.
J Neurochem ; 168(9): 3284-3307, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39135362

RESUMO

The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.


Assuntos
Apolipoproteína E4 , Astrócitos , Proteínas de Transporte de Cátions , Cobre , Cobre/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Linhagem Celular Tumoral , Camundongos Transgênicos , Células Cultivadas
4.
Alzheimers Dement ; 20(8): 5434-5449, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38988055

RESUMO

INTRODUCTION: Spatial extent-based measures of how far amyloid beta (Aß) has spread throughout the neocortex may be more sensitive than traditional Aß-positron emission tomography (PET) measures of Aß level for detecting early Aß deposits in preclinical Alzheimer's disease (AD) and improve understanding of Aß's association with tau proliferation and cognitive decline. METHODS: Pittsburgh Compound-B (PIB)-PET scans from 261 cognitively unimpaired older adults from the Harvard Aging Brain Study were used to measure Aß level (LVL; neocortical PIB DVR) and spatial extent (EXT), calculated as the proportion of the neocortex that is PIB+. RESULTS: EXT enabled earlier detection of Aß deposits longitudinally confirmed to reach a traditional LVL-based threshold for Aß+ within 5 years. EXT improved prediction of cognitive decline (Preclinical Alzheimer Cognitive Composite) and tau proliferation (flortaucipir-PET) over LVL. DISCUSSION: These findings indicate EXT may be more sensitive to Aß's role in preclinical AD than level and improve targeting of individuals for AD prevention trials. HIGHLIGHTS: Aß spatial extent (EXT) was measured as the percentage of the neocortex with elevated Pittsburgh Compound-B. Aß EXT improved detection of Aß below traditional PET thresholds. Early regional Aß deposits were spatially heterogeneous. Cognition and tau were more closely tied to Aß EXT than Aß level. Neocortical tau onset aligned with reaching widespread neocortical Aß.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Compostos de Anilina , Tomografia por Emissão de Pósitrons , Tiazóis , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Feminino , Idoso , Peptídeos beta-Amiloides/metabolismo , Neocórtex/diagnóstico por imagem , Neocórtex/metabolismo , Neocórtex/patologia , Proteínas tau/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Idoso de 80 Anos ou mais
5.
Alzheimers Res Ther ; 16(1): 148, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961512

RESUMO

BACKGROUND: Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR. METHODS: We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aß, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women). RESULTS: The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline. CONCLUSION: These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Feminino , Masculino , Idoso , Proteínas tau/metabolismo , Estudos Longitudinais , Estudos Transversais , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Cognição/fisiologia , Pessoa de Meia-Idade , Reserva Cognitiva/fisiologia , Biomarcadores , Neuroimagem/métodos
6.
Lancet Neurol ; 23(9): 913-924, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074479

RESUMO

BACKGROUND: Genetic variants that cause autosomal dominant Alzheimer's disease are highly penetrant but vary substantially regarding age at symptom onset (AAO), rates of cognitive decline, and biomarker changes. Most pathogenic variants that cause autosomal dominant Alzheimer's disease are in presenilin 1 (PSEN1), which encodes the catalytic core of γ-secretase, an enzyme complex that is crucial in production of amyloid ß. We aimed to investigate whether the heterogeneity in AAO and biomarker trajectories in carriers of PSEN1 pathogenic variants could be predicted on the basis of the effects of individual PSEN1 variants on γ-secretase activity and amyloid ß production. METHODS: For this cross-sectional and longitudinal analysis, we used data from participants enrolled in the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS) via the DIAN-OBS data freeze version 15 (data collected between Feb 29, 2008, and June 30, 2020). The data freeze included data from 20 study sites in research institutions, universities, hospitals, and clinics across Europe, North and South America, Asia, and Oceania. We included individuals with PSEN1 pathogenic variants for whom relevant genetic, clinical, imaging, and CSF data were available. PSEN1 pathogenic variants were characterised via genetically modified PSEN1 and PSEN2 double-knockout human embryonic kidney 293T cells and immunoassays for Aß37, Aß38, Aß40, Aß42, and Aß43. A summary measure of γ-secretase activity (γ-secretase composite [GSC]) was calculated for each variant and compared with clinical history-derived AAO using correlation analyses. We used linear mixed-effect models to assess associations between GSC scores and multimodal-biomarker and clinical data from DIAN-OBS. We used separate models to assess associations with Clinical Dementia Rating Sum of Boxes (CDR-SB), Mini-Mental State Examination (MMSE), and Wechsler Memory Scale-Revised (WMS-R) Logical Memory Delayed Recall, [11C]Pittsburgh compound B (PiB)-PET and brain glucose metabolism using [18F] fluorodeoxyglucose (FDG)-PET, CSF Aß42-to-Aß40 ratio (Aß42/40), CSF log10 (phosphorylated tau 181), CSF log10 (phosphorylated tau 217), and MRI-based hippocampal volume. FINDINGS: Data were included from 190 people carrying PSEN1 pathogenic variants, among whom median age was 39·0 years (IQR 32·0 to 48·0) and AAO was 44·5 years (40·6 to 51·4). 109 (57%) of 190 carriers were female and 81 (43%) were male. Lower GSC values (ie, lower γ-secretase activity than wild-type PSEN1) were associated with earlier AAO (r=0·58; p<0·0001). GSC was associated with MMSE (ß=0·08, SE 0·03; p=0·0043), CDR-SB (-0·05, 0·02; p=0·0027), and WMS-R Logical Memory Delayed Recall scores (0·09, 0·02; p=0·0006). Lower GSC values were associated with faster increase in PiB-PET signal (p=0·0054), more rapid decreases in hippocampal volume (4·19, 0·77; p<0·0001), MMSE (0·02, 0·01; p=0·0020), and WMS-R Logical Memory Delayed Recall (0·004, 0·001; p=0·0003). INTERPRETATION: Our findings suggest that clinical heterogeneity in people with autosomal dominant Alzheimer's disease can be at least partly explained by different effects of PSEN1 variants on γ-secretase activity and amyloid ß production. They support targeting γ-secretase as a therapeutic approach and suggest that cell-based models could be used to improve prediction of symptom onset. FUNDING: US National Institute on Aging, Alzheimer's Association, German Center for Neurodegenerative Diseases, Raul Carrea Institute for Neurological Research, Japan Agency for Medical Research and Development, Korea Health Industry Development Institute, South Korean Ministry of Health and Welfare, South Korean Ministry of Science and ICT, and Spanish Institute of Health Carlos III.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Biomarcadores , Presenilina-1 , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Masculino , Feminino , Estudos Transversais , Estudos Longitudinais , Pessoa de Meia-Idade , Presenilina-1/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano , Adulto , Idoso , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Proteínas tau/genética , Idade de Início
7.
Alzheimers Dement (Amst) ; 16(3): e12616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077684

RESUMO

INTRODUCTION: Sleep is crucial for memory consolidation and the clearance of toxic proteins associated with Alzheimer's disease (AD). We examined the association between sleep characteristics and imaging biomarkers of early amyloid beta (Aß) and tau pathology as well as neurodegeneration in brain regions known to be affected in the incipient stages of AD. METHODS: Thirty-nine cognitively unimpaired (CU) participants of the Harvard Aging Brain Study underwent at-home polysomnography as well as tau positron emission tomography (flortaucipir-PET), amyloid PET (Pittsburgh compound B [PiB]-PET), and magnetic resonance imaging-derived assessment of cortical thickness (CT). RESULTS: Increased N1 sleep was associated with a higher tau PET signal (ß = 0.009, p = 0.001) and lower CT in the temporal composite region of interest (ß = -0.017, p = 0.007). Decreased slow-wave sleep (SWS) was associated with higher tau burden in the temporal composite (ß = -0.008, p = 0.005) and lower CT (ß = 0.008, p = 0.002), even after controlling for global PiB-PET. DISCUSSION: In CU older adults, lower SWS and higher N1 sleep were associated with higher tau burden and lower CT in brain regions associated with early tau deposition and vulnerable to AD-related neurodegeneration through mechanisms dissociable from amyloid deposition. Highlights: We report the results of an observational study, which leveraged -a well-characterized cohort of healthy aging (Harvard Aging Brain Study) by adding in-home full polysomnograms.By adding at-home polysomnograms to this unique and deeply phenotyped cohort, we examined variations in sleep architecture that are associated with Alzheimer's disease (AD) pathologic changes.Our results confirmed the association of sleep changes with early tau and cortical neurodegenerative changes that were independent of amyloid.The results will be of importance in monitoring sleep-related variations in relation to the natural history of AD pathology and in designing sleep-focused clinical trials.

8.
JAMA Neurol ; 81(8): 798-804, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38884955

RESUMO

Importance: Studies have suggested that maternal history of late-onset Alzheimer disease, but not paternal, predisposes individuals to higher brain ß-amyloid (Aß) burden, reduced brain metabolism, and lower gray matter volumes. Objective: To characterize maternal vs paternal history of memory impairment in terms of brain Aß-positron emission tomography (Aß-PET) and baseline cognition among a large sample of cognitively unimpaired older adults. Design, Setting, and Participants: This cross-sectional study leveraged data from 4413 individuals who were screened for the Anti-Amyloid Treatment in Asymptomatic Alzheimer (A4) study, a randomized clinical trial conducted across 67 sites in the US, Australia, Canada, and Japan aimed at Alzheimer disease prevention. Data were collected between April 2014 and December 2017 and analyzed from December 2022 to June 2023. Participants were cognitively unimpaired adults (Clinical Dementia Rating = 0 and/or Mini-Mental State Examination score ≥25) between the ages of 65 and 85 years who underwent PET imaging to assess cortical Aß levels for trial eligibility. A total of 4492 participants were screened, and 79 missing data were excluded. Main Outcomes and Measures: Demographic characteristics (eg, age, sex, education), apolipoprotein E genotyping, participant-reported parental history of memory impairment and parental age at symptom onset were collected as variables. Parental history was assessed in terms of continuous neocortical 18F-florbetapir Aß-PET and the Preclinical Alzheimer Cognitive Composite. Results: Of 4413 individuals (mean [SD] age, 71.27 [4.66] years, 2617 women [59.3%]), mean Aß-PET was elevated in individuals with history of memory impairment in both parents (n = 455; mean [SD] standardized uptake value ratio [SUVR] = 1.12 [0.19]; Wilcoxon P = 1.1 × 10-5) and in those with only maternal history (n = 1772; mean [SD] SUVR = 1.10 [0.19]; Wilcoxon P = 2.70 × 10-5) compared with those with only paternal history (n = 632; mean [SD] SUVR = 1.08 [0.18]; Wilcoxon P = 1.1 × 10-5) or no family history (n = 1554; mean [SD] SUVR = 1.08 [0.19]; Wilcoxon P = 1.1 × 10-5). Paternal history of early-onset memory impairment (age <65 years) but not late-onset (age ≥65 years) was associated with elevated participant Aß-PET (mean [SD] SUVR = 1.19 [0.21]; P = 3.00 × 10-6) in comparison with no paternal history (mean [SD] SUVR = 1.09 [0.19]) whereas maternal history was associated with elevated Aß in both early-onset and late-onset groups. There was no association with cognition. Conclusions and Relevance: In this study, maternal history (at any age) and paternal history of early-onset memory impairment were associated with Aß burden among asymptomatic older individuals. Sex-specific parental history may help inform clinicians on likelihood of Aß burden in offspring and help identify high-risk individuals at the earliest stages of disease for prevention.


Assuntos
Peptídeos beta-Amiloides , Transtornos da Memória , Tomografia por Emissão de Pósitrons , Humanos , Feminino , Masculino , Idoso , Peptídeos beta-Amiloides/metabolismo , Estudos Transversais , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico por imagem , Pais
9.
Alzheimers Res Ther ; 16(1): 119, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822365

RESUMO

BACKGROUND: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aß)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aß)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS: Our findings demonstrate that the LC can provide resilience against Aß-related attention decline. However, when Aß accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aß-related cognitive decline.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Imageamento por Ressonância Magnética , Lobo Parietal , Humanos , Feminino , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Doença de Alzheimer/fisiopatologia , Idoso , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/diagnóstico por imagem , Idoso de 80 Anos ou mais , Atenção/fisiologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Tomografia por Emissão de Pósitrons , Estudos Transversais , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Testes Neuropsicológicos
10.
Alzheimers Res Ther ; 16(1): 129, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886798

RESUMO

BACKGROUND: Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS: A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS: Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS: Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Locus Cerúleo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Feminino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Masculino , Idoso , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Estudos de Coortes , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Carbolinas , Tiazóis , Compostos de Anilina , Espessura Cortical do Cérebro
11.
Front Aging Neurosci ; 16: 1420290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38934017

RESUMO

Background: Changes in everyday functioning constitute a clinically meaningful outcome, even in the early stages of Alzheimer's disease. Performance-based assessments of everyday functioning might help uncover these early changes. We aimed to investigate how changes over time in everyday functioning relate to tau and amyloid in cognitively unimpaired older adults. Methods: Seventy-six cognitively unimpaired participants (72 ± 6 years old, 61% female) completed multiple Harvard Automated Phone Task (APT) assessments over 2.0 ± 0.9 years. The Harvard APT consists of three tasks, performed through an automated phone system, in which participants refill a prescription (APT-Script), select a new primary care physician (APT-PCP), and transfer money to pay a bill (APT-Bank). Participants underwent Pittsburgh compound-B and flortaucipir positron emission tomography scans at baseline. We computed distribution volume ratios for a cortical amyloid aggregate and standardized uptake volume ratios for medial temporal and neocortical tau regions. In separate linear mixed models, baseline amyloid by time and tau by time interactions were used to predict longitudinal changes in performance on the Harvard APT tasks. Three-way amyloid by tau by time interactions were also investigated. Lastly, we examined associations between tau and change in Harvard APT scores in exploratory voxel-wise whole-brain analyses. All models were adjusted for age, sex, and education. Results: Amyloid [unstandardized partial regression coefficient estimate (ß) = -0.007, 95% confidence interval (95% CI) = (-0.013, -0.001)], and medial temporal tau [ß = -0.013, 95% CI = (-0.022, -0.004)] were associated with change over time in years on APT-PCP only, i.e., higher baseline amyloid and higher baseline tau were associated with steeper rate of decline of APT-PCP. Voxel-wise analyses showed widespread associations between tau and change in APT-PCP scores over time. Conclusion: Even among cognitively unimpaired older adults, changes over time in the performance of cognitively complex everyday activities relate to cortical amyloid and widespread cerebral tau burden at baseline. These findings support the link between Alzheimer's disease pathology and function and highlight the importance of measuring everyday functioning in preclinical disease stages.

12.
Alzheimers Dement ; 20(6): 3958-3971, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38676563

RESUMO

INTRODUCTION: Animal research has shown that tau pathology in the locus coeruleus (LC) is associated with reduced norepinephrine signaling, lower projection density to the medial temporal lobe (MTL), atrophy, and cognitive impairment. We investigated the contribution of LC-MTL functional connectivity (FCLC-MTL) on cortical atrophy across Braak stage regions and its impact on cognition. METHODS: We analyzed functional magnetic resonance imaging and amyloid beta (Aß) positron emission tomography data from 128 cognitively normal participants, associating novelty-related FCLC-MTL with longitudinal atrophy and cognition with and without Aß moderation. RESULTS: Cross-sectionally, lower FCLC-MTL was associated with atrophy in Braak stage II regions. Longitudinally, atrophy in Braak stage 2 to 4 regions related to lower baseline FCLC-MTL at elevated levels of Aß, but not to other regions. Atrophy in Braak stage 2 regions mediated the relation between FCLC-MTL and subsequent cognitive decline. DISCUSSION: FCLC-MTL is implicated in Aß-related cortical atrophy, suggesting that LC-MTL connectivity could confer neuroprotective effects in preclinical AD. HIGHLIGHTS: Novelty-related functional magnetic resonance imaging (fMRI) LC-medial temporal lobe (MTL) connectivity links to longitudinal Aß-dependent atrophy. This relationship extended to higher Braak stage regions with increasing Aß burden. Longitudinal MTL atrophy mediated the LC-MTL connectivity-cognition relationship. Our findings mirror the animal data on MTL atrophy following NE signal dysfunction.


Assuntos
Doença de Alzheimer , Atrofia , Disfunção Cognitiva , Locus Cerúleo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Masculino , Feminino , Atrofia/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Estudos Transversais , Lobo Temporal/patologia , Lobo Temporal/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Estudos Longitudinais , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia
13.
J Cereb Blood Flow Metab ; 44(8): 1319-1328, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38452039

RESUMO

In addition to amyloid and tau pathology, elevated systemic vascular risk, white matter injury, and reduced cerebral blood flow contribute to late-life cognitive decline. Given the strong collinearity among these parameters, we proposed a framework to extract the independent latent features underlying cognitive decline using the Harvard Aging Brain Study (N = 166 cognitively unimpaired older adults at baseline). We used the following measures from the baseline visit: cortical amyloid, inferior temporal cortex tau, relative cerebral blood flow, white matter hyperintensities, peak width of skeletonized mean diffusivity, and Framingham Heart Study cardiovascular disease risk. We used exploratory factor analysis to extract orthogonal factors from these variables and their interactions. These factors were used in a regression model to explain longitudinal Preclinical Alzheimer Cognitive Composite-5 (PACC) decline (follow-up = 8.5 ±2.7 years). We next examined whether gray matter volume atrophy acts as a mediator of factors and PACC decline. Latent factors of systemic vascular risk, white matter injury, and relative cerebral blood flow independently explain cognitive decline beyond amyloid and tau. Gray matter volume atrophy mediates these associations with the strongest effect on white matter injury. These results suggest that systemic vascular risk contributes to cognitive decline beyond current markers of cerebrovascular injury, amyloid, and tau.


Assuntos
Envelhecimento , Circulação Cerebrovascular , Disfunção Cognitiva , Proteínas tau , Humanos , Idoso , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Masculino , Feminino , Proteínas tau/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Envelhecimento/patologia , Circulação Cerebrovascular/fisiologia , Idoso de 80 Anos ou mais , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Substância Branca/metabolismo , Substância Branca/patologia , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Amiloide/metabolismo , Atrofia
14.
Proc Biol Sci ; 291(2016): 20232666, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351808

RESUMO

Wildlife is increasingly exposed to sublethal transient cancer risk factors, including mutagenic substances, which activates their anti-cancer defences, promotes tumourigenesis, and may negatively impact populations. Little is known about how exposure to cancer risk factors impacts the behaviour of wildlife. Here, we investigated the effects of a sublethal, short-term exposure to a carcinogen at environmentally relevant concentrations on the activity patterns of wild Girardia tigrina planaria during a two-phase experiment, consisting of a 7-day exposure to cadmium period followed by a 7-day recovery period. To comprehensively explore the effects of the exposure on activity patterns, we employed the double hierarchical generalized linear model framework which explicitly models residual intraindividual variability in addition to the mean and variance of the population. We found that exposed planaria were less active compared to unexposed individuals and were able to recover to pre-exposure activity levels albeit with a reduced variance in activity at the start of the recovery phase. Planaria showing high activity levels were less predictable with larger daily activity variations and higher residual variance. Thus, the shift in behavioural variability induced by an exposure to a cancer risk factor can be quantified using advanced tools from the field of behavioural ecology. This is required to understand how tumourous processes affect the ecology of species.


Assuntos
Ecologia , Neoplasias , Humanos , Animais , Comportamento Animal , Animais Selvagens , Fatores de Risco
15.
Brain ; 147(6): 2158-2168, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38315899

RESUMO

Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.


Assuntos
Doença de Alzheimer , Cognição , Fator A de Crescimento do Endotélio Vascular , Proteínas tau , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Feminino , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Proteínas tau/metabolismo , Proteínas tau/sangue , Estudos Longitudinais , Idoso de 80 Anos ou mais , Cognição/fisiologia , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/sangue , Biomarcadores/sangue
16.
Lab Chip ; 24(3): 505-516, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38165774

RESUMO

Biological models with genetic similarities to humans are used for exploratory research to develop behavioral screening tools and understand sensory-motor interactions. Their small, often mm-sized appearance raises challenges in the straightforward quantification of their subtle behavioral responses and calls for new, customisable research tools. 3D printing provides an attractive approach for the manufacture of custom designs at low cost; however, challenges remain in the integration of functional materials like porous membranes. Nanoporous membranes have been integrated with resin exchange using purpose-designed resins by digital light projection 3D printing to yield functionally integrated devices using a simple, economical and semi-automated process. Here, the impact of the layer thickness and layer number on the porous properties - parameters unique for 3D printing - are investigated, showing decreases in mean pore diameter and porosity with increasing layer height and layer number. From the same resin formulation, materials with average pore size between 200 and 600 nm and porosity between 45% and 61% were printed. Membrane-integrated devices were used to study the chemoattractant induced behavioural response of zebrafish embryos and planarians, both demonstrating a predominant behavioral response towards the chemoattractant, spending >85% of experiment time in the attractant side of the observation chamber. The presented 3D printing method can be used for printing custom designed membrane-integrated devices using affordable 3D printers and enable fine-tuning of porous properties through adjustment of layer height and number. This accessible approach is expected to be adopted for applications including behavioural studies, early-stage pre-clinical drug discovery and (environmental) toxicology.


Assuntos
Organismos Aquáticos , Peixe-Zebra , Humanos , Animais , Porosidade , Alicerces Teciduais , Impressão Tridimensional
17.
J Cereb Blood Flow Metab ; 44(1): 131-141, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728659

RESUMO

Clinically normal females exhibit higher 18F-flortaucipir (FTP)-PET signal than males across the cortex. However, these sex differences may be explained by neuroimaging idiosyncrasies such as off-target extracerebral tracer retention or partial volume effects (PVEs). 343 clinically normal participants (female = 58%; mean[SD]=73.8[8.5] years) and 55 patients with mild cognitive impairment (female = 38%; mean[SD] = 76.9[7.3] years) underwent cross-sectional FTP-PET. We parcellated extracerebral FreeSurfer areas based on proximity to cortical ROIs. Sex differences in cortical tau were then estimated after accounting for local extracerebral retention. We simulated PVE by convolving group-level standardized uptake value ratio means in each ROI with 6 mm Gaussian kernels and compared the sexes across ROIs post-smoothing. Widespread sex differences in extracerebral retention were observed. Although attenuating sex differences in cortical tau-PET signal, covarying for extracerebral retention did not impact the largest sex differences in tau-PET signal. Differences in PVE were observed in both female and male directions with no clear sex-specific bias. Our findings suggest that sex differences in FTP are not solely attributed to off-target extracerebral retention or PVE, consistent with the notion that sex differences in medial temporal and neocortical tau are biologically driven. Future work should investigate sex differences in regional cerebral blood flow kinetics and longitudinal tau-PET.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Caracteres Sexuais , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Carbolinas/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/metabolismo
18.
Sci Total Environ ; 913: 169491, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154641

RESUMO

The presence of doubly uniparental inheritance (DUI) in bivalves represents a unique mode of mitochondrial transmission, whereby paternal (male-transmitted M-type) and maternal (female-transmitted F-type) haplotypes are transmitted to offspring separately. Male embryos retain both haplotypes, but the M-type is selectively removed from females. Due to the presence of heteroplasmy in males, mtDNA can recombine resulting in a 'masculinized' haplotype referred to as Mf-type. While mtDNA recombination is usually rare, it has been recorded in multiple mussel species across the Northern Hemisphere. Given that mitochondria are the powerhouse of the cell, different mtDNA haplotypes may have different selective advantages under diverse environmental conditions. This may be particularly important for sperm fitness and fertilization success. In this study we aimed to i) determine the presence, prevalence of the Mf-type in Australian blue mussels (Mytilus sp.) and ii) investigate the effect of Mf-mtDNA on sperm performance (a fitness correlate). We found a high prevalence of recombined mtDNA (≈35 %) located within the control region of the mitochondrial genome, which occurred only in specimens that contained Southern Hemisphere mtDNA. The presence of two female mitotypes were identified in the studied mussels, one likely originating from the Northern Hemisphere, and the other either representing the endemic M. planulatus species or introduced genotypes from the Southern Hemisphere. Despite having recombination events present in a third of the studied population, analysis of sperm performance indicated no difference in fertilization success related to mitotype.


Assuntos
Bivalves , Mytilus edulis , Animais , Masculino , Feminino , Austrália , Sêmen , Mitocôndrias , DNA Mitocondrial , Bivalves/genética , Fertilização , Recombinação Genética
19.
Nat Commun ; 14(1): 7659, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036535

RESUMO

Many of the Alzheimer's disease (AD) risk genes are specifically expressed in microglia and astrocytes, but how and when the genetic risk localizing to these cell types contributes to AD pathophysiology remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets and uncover the impact of cell-type-specific genetic risk on AD endophenotypes. In an autopsy dataset spanning all stages of AD (n = 1457), the astrocytic ADPRS affected diffuse and neuritic plaques (amyloid-ß), while microglial ADPRS affected neuritic plaques, microglial activation, neurofibrillary tangles (tau), and cognitive decline. In an independent neuroimaging dataset of cognitively unimpaired elderly (n = 2921), astrocytic ADPRS was associated with amyloid-ß, and microglial ADPRS was associated with amyloid-ß and tau, connecting cell-type-specific genetic risk with AD pathology even before symptom onset. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Fatores de Risco
20.
Neurology ; 101(24): e2533-e2544, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37968130

RESUMO

BACKGROUND AND OBJECTIVES: Hippocampal volume (HV) atrophy is a well-known biomarker of memory impairment. However, compared with ß-amyloid (Aß) and tau imaging, it is less specific for Alzheimer disease (AD) pathology. This lack of specificity could provide indirect information about potential copathologies that cannot be observed in vivo. In this prospective cohort study, we aimed to assess the associations among Aß, tau, HV, and cognition, measured over a 10-year follow-up period with a special focus on the contributions of HV atrophy to cognition after adjusting for Aß and tau. METHODS: We enrolled 283 older adults without dementia or overt cognitive impairment in the Harvard Aging Brain Study. In this report, we only analyzed data from individuals with available longitudinal imaging and cognition data. Serial MRI (follow-up duration 1.3-7.0 years), neocortical Aß imaging on Pittsburgh Compound B PET scans (1.9-8.5 years), entorhinal and inferior temporal tau on flortaucipir PET scans (0.8-6.0 years), and the Preclinical Alzheimer Cognitive Composite (3.0-9.8 years) were prospectively collected. We evaluated the longitudinal associations between Aß, tau, volume, and cognition data and investigated sequential models to test the contribution of each biomarker to cognitive decline. RESULTS: We analyzed data from 128 clinically normal older adults, including 72 (56%) women and 56 (44%) men; median age at inclusion was 73 years (range 63-87). Thirty-four participants (27%) exhibited an initial high-Aß burden on PET imaging. Faster HV atrophy was correlated with faster cognitive decline (R2 = 0.28, p < 0.0001). When comparing all biomarkers, HV slope was associated with cognitive decline independently of Aß and tau measures, uniquely accounting for 10% of the variance. Altogether, 45% of the variance in cognitive decline was explained by combining the change measures in the different imaging biomarkers. DISCUSSION: In older adults, longitudinal hippocampal atrophy is associated with cognitive decline, independently of Aß or tau, suggesting that non-AD pathologies (e.g., TDP-43, vascular) may contribute to hippocampal-mediated cognitive decline. Serial HV measures, in addition to AD-specific biomarkers, may help evaluate the contribution of non-AD pathologies that cannot be measured otherwise in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas tau , Estudos Prospectivos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Atrofia , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA