Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Neurosurg Rev ; 47(1): 65, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265724

RESUMO

OBJECTIVE: The extent of resection and neurological outcome are important prognostic markers for overall survival in glioma patients. Confocal laser endomicroscopy is a tool to examine tissue without the need for fixation or staining. This study aims to analyze gliomas in confocal laser endomicroscopy and identify reliable diagnostic criteria for glial matter and glial tumors. MATERIAL AND METHODS: One-hundred-and-five glioma specimens were analyzed using a 670-nm confocal laser endomicroscope and then processed into hematoxylin-eosin-stained frozen sections. All confocal images and frozen sections were evaluated for the following criteria: presence of tumor, cellularity, nuclear pleomorphism, changes of the extracellular glial matrix, microvascular proliferation, necrosis, and mitotic activity. Recurring characteristics were identified. Accuracy, sensitivity, specificity, and positive and negative predictive values were assessed for each feature. RESULTS: All 125 specimens could be processed and successfully analyzed via confocal laser endomicroscopy. We found diagnostic criteria to identify white and grey matter and analyze cellularity, nuclear pleomorphism, changes in the glial matrix, vascularization, and necrosis in glial tumors. An accuracy of > 90.0 % was reached for grey matter, cellularity, and necrosis, > 80.0 % for white matter and nuclear pleomorphism, and > 70.0 % for microvascular proliferation and changes of the glial matrix. Mitotic activity could not be identified. Astroglial tumors showed significantly less nuclear pleomorphism in confocal laser endomicroscopy than oligodendroglial tumors (p < 0.001). Visualization of necrosis aids in the differentiation of low grade gliomas and high grade gliomas  (p < 0.002). CONCLUSION: Autofluorescence-based confocal laser endomicroscopy proved not only useful in differentiation between tumor and brain tissue but also revealed useful clues to further characterize tissue without processing in a lab. Possible applications include the improvement of extent of resection and the safe harvest of representative tissue for histopathological and molecular genetic diagnostics.


Assuntos
Glioma , Recidiva Local de Neoplasia , Humanos , Endoscopia , Córtex Cerebral , Necrose
2.
Cancers (Basel) ; 15(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37627124

RESUMO

ARID1A is a subunit of the mammalian SWI/SNF complex, which is thought to regulate gene expression through restructuring chromatin structures. Its gene ARID1A is frequently mutated and ARID1A levels are lowered in several human cancers, especially gynecologic ones. A functional ARID1A loss may have prognostic or predictive value in terms of therapeutic strategies but has not been proposed based on a quantitative method. Hardly any literature is available on ARID1A levels in tumor samples. We developed an indirect enzyme-linked immunosorbent assay (ELISA) for ARID1A based on the current EMA and FDA criteria. We demonstrated that our ELISA provides the objective, accurate, and precise quantification of ARID1A concentrations in recombinant protein solutions, cell culture standards, and tissue lysates of tumors. A standard curve analysis yielded a 'goodness of fit' of R2 = 0.99. Standards measured on several plates and days achieved an inter-assay accuracy of 90.26% and an inter-assay precision with a coefficient of variation of 4.53%. When tumor lysates were prepared and measured multiple times, our method had an inter-assay precision with a coefficient of variation of 11.78%. We believe that our suggested method ensures a high reproducibility and can be used for a high sample throughput to determine the ARID1A concentration in different tumor entities. The application of our ELISA on various tumor and control tissues will allow us to explore whether quantitative ARID1A measurements in tumor samples are of predictive value.

3.
Front Neurol ; 14: 1229641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521293

RESUMO

Introduction: This study aimed to investigate microglial and macrophage activation in 17 patients who died in the context of a COVID-19 infection in 2020 and 2021. Methods: Through immunohistochemical analysis, the lysosomal marker CD68 was used to detect diffuse parenchymal microglial activity, pronounced perivascular macrophage activation and macrophage clusters. COVID-19 patients were compared to control patients and grouped regarding clinical aspects. Detection of viral proteins was attempted in different regions through multiple commercially available antibodies. Results: Microglial and macrophage activation was most pronounced in the white matter with emphasis in brain stem and cerebellar areas. Analysis of lesion patterns yielded no correlation between disease severity and neuropathological changes. Occurrence of macrophage clusters could not be associated with a severe course of disease or preconditions but represent a more advanced stage of microglial and macrophage activation. Severe neuropathological changes in COVID-19 were comparable to severe Influenza. Hypoxic damage was not a confounder to the described neuropathology. The macrophage/microglia reaction was less pronounced in post COVID-19 patients, but detectable i.e. in the brain stem. Commercially available antibodies for detection of SARS-CoV-2 virus material in immunohistochemistry yielded no specific signal over controls. Conclusion: The presented microglial and macrophage activation might be an explanation for the long COVID syndrome.

4.
Radiologie (Heidelb) ; 63(8): 577-582, 2023 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-37477671

RESUMO

BACKGROUND: Already with the update of the 4th edition of the World Health Organization (WHO) classification of tumors of the central nervous system, it was pointed out that pediatric diffuse glioma do not follow the same molecular mechanisms used to characterize adult diffuse glioma. OBJECTIVES: What changes result from the update of the classification of tumors of the central nervous system? METHODS: With the 5th edition of the WHO classification of tumors of the central nervous system, a second level of information containing molecular changes besides the histological characterization and grading of tumors was established. RESULTS: A new classification of diffuse pediatric brain tumors based on molecular tumor pathways was established. The most important tumor pathways, considered for the new classification, were the activation of receptor tyrosine kinases and histone H3 alterations that cause epigenetic changes. CONCLUSIONS: Increasingly better understanding of mechanisms in the development of pediatric brain tumors gives hope for more specific therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Adulto , Humanos , Criança , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias Encefálicas/patologia , Glioma/patologia , Sistema Nervoso Central/patologia , Organização Mundial da Saúde
5.
Oncol Rep ; 50(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37264960

RESUMO

The retinoblastoma gene (RB1) is a tumor suppressor gene that serves a key role in the development of numerous tumor diseases that can be downregulated by DNA methylation within its promoter region. The present study analyzed the methylation status of the RB1 promoter of 85 glioblastomas to assess its role in this tumor. To elucidate the underlying mechanism, RB1 promoter methylation was evaluated using methylation­specific PCR with subsequent evaluation of the results via gel electrophoresis using ethidium bromide. Of the 85 samples analyzed, only one demonstrated RB1­promoter methylation. While there are contradictory results on this matter in the literature, this study is, to the best of our knowledge, the largest on this topic to date as well as the first to use the WHO 2016 classification. The results of the present indicated that the RB1 promoter methylation does not serve a role in the development and progression of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Metilação de DNA/genética , Processamento de Proteína Pós-Traducional , Regiões Promotoras Genéticas/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a Retinoblastoma/genética
6.
Cells ; 12(9)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174691

RESUMO

Lysosomotropic agent chloroquine was shown to sensitize non-stem glioblastoma cells to radiation in vitro with p53-dependent apoptosis implicated as one of the underlying mechanisms. The in vivo outcomes of chloroquine or its effects on glioblastoma stem cells have not been previously addressed. This study undertakes a combinatorial approach encompassing in vitro, in vivo and in silico investigations to address the relationship between chloroquine-mediated radiosensitization and p53 status in glioblastoma stem cells. Our findings reveal that chloroquine elicits antagonistic impacts on signaling pathways involved in the regulation of cell fate via both transcription-dependent and transcription-independent mechanisms. Evidence is provided that transcriptional impacts of chloroquine are primarily determined by p53 with chloroquine-mediated activation of pro-survival mevalonate and p21-DREAM pathways being the dominant response in the background of wild type p53. Non-transcriptional effects of chloroquine are conserved and converge on key cell fate regulators ATM, HIPK2 and AKT in glioblastoma stem cells irrespective of their p53 status. Our findings indicate that pro-survival responses elicited by chloroquine predominate in the context of wild type p53 and are diminished in cells with transcriptionally impaired p53. We conclude that p53 is an important determinant of the balance between pro-survival and pro-death impacts of chloroquine and propose that p53 functional status should be taken into consideration when evaluating the efficacy of glioblastoma radiosensitization by chloroquine.


Assuntos
Glioblastoma , Radiossensibilizantes , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cloroquina/farmacologia , Radiossensibilizantes/farmacologia , Células-Tronco/metabolismo , Medição de Risco , Proteínas de Transporte , Proteínas Serina-Treonina Quinases/metabolismo
7.
J Neurol ; 270(4): 2149-2161, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36624183

RESUMO

BACKGROUND: Evaluation of the application of CSF real-time quaking-induced conversion in Creutzfeldt-Jakob disease surveillance to investigate test accuracy, influencing factors, and associations with disease incidence. METHODS: In a prospective surveillance study, CSF real-time quaking-induced conversion was performed in patients with clinical suspicion of prion disease (2014-2022). Clinically or histochemically characterized patients with sporadic Creutzfeldt-Jakob disease (n = 888) and patients with final diagnosis of non-prion disease (n = 371) were included for accuracy and association studies. RESULTS: The overall test sensitivity for sporadic Creutzfeldt-Jakob disease was 90% and the specificity 99%. Lower sensitivity was associated with early disease stage (p = 0.029) and longer survival (p < 0.001). The frequency of false positives was significantly higher in patients with inflammatory CNS diseases (3.7%) than in other diagnoses (0.4%, p = 0.027). The incidence increased from 1.7 per million person-years (2006-2017) to 2.0 after the test was added to diagnostic the criteria (2018-2021). CONCLUSION: We validated high diagnostic accuracy of CSF real-time quaking-induced conversion but identified inflammatory brain disease as a potential source of (rare) false-positive results, indicating thorough consideration of this condition in the differential diagnosis of Creutzfeldt-Jakob disease. The surveillance improved after amendment of the diagnostic criteria, whereas the incidence showed no suggestive alterations during the COVID-19 pandemic.


Assuntos
COVID-19 , Síndrome de Creutzfeldt-Jakob , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/epidemiologia , Estudos Prospectivos , Pandemias , Sensibilidade e Especificidade
8.
Cancer Med ; 12(7): 8433-8444, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583475

RESUMO

INTRODUCTION: Meningiomas are mostly benign neoplasms of the central nervous system. Nevertheless there are recurrences in about 20% after surgical resection. Previous studies could reveal several predictors of meningioma recurrence. Tumor progression often is associated with a specific pattern of chromosome losses. Our study investigated the potential function of selected microRNAs as markers of tumor progression. METHODS: By real-time polymerase chain reaction the expressions of microRNA 21-3p, 34a-3p, 200a-3p, and 409-3p were analyzed in solid tumor and in blood samples of 51 meningioma patients as well as in blood samples of 20 healthy individuals. Additionally, aberrations of parts of chromosomes 1, 14, 18, and 22 were analyzed by FISH. Tumor and blood samples were statistically analyzed, using Spearman's rank correlation coefficient as well as Mann-Whitney U- and Kruskal-Wallis-Test. RESULTS: MicroRNA 200a showed significantly lower expressions in recurrent meningiomas than in newly diagnosed ones. MicroRNA 409 in meningiomas was correlated significantly with tumor volume and showed a significant negative correlation with patient age. Significance was found between the expression patterns of microRNAs 34a and 200a with the respective aberrations of chromosome 1p and the microRNA 409 with aberration of chromosome 14. In the male cohort the expression of microRNA 200a in blood was significantly upregulated in patients compared to healthy volunteers. By our research the function of microRNA 200a was proved to detect meningioma patients by liquid biopsy. CONCLUSION: We detected microRNA 200a as a new biomarker to indicate meningioma recurrences. Future transferability to blood could be important for patient follow-up.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Masculino , Humanos , Meningioma/genética , Meningioma/patologia , MicroRNAs/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Recidiva Local de Neoplasia/genética , Deleção Cromossômica
9.
Hormones (Athens) ; 21(4): 653-663, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35947342

RESUMO

PURPOSE/OBJECTIVE: Multiple tumorous lesions in one pituitary gland are rare and mostly described in case reports. Their incidences and combinations are defined in larger collectives. Therefore, we analyzed our large collection for double tumors and combinations of tumors, cysts, and inflammation. METHODS: The German Registry of Pituitary Tumors, including cases from 1990 to 2018, served as the database. Our collection comprises a total of 16,283 cases up until the end of 2018. Of these cases, 12,673 originated from surgical and 3,610 from autopsy material. All specimens were fixed in formalin and embedded in paraffin. The sections were stained with hematoxylin-eosin and PAS. Monoclonal (prolactin, TSH, FSH, LH, and α subunit) or polyclonal (GH and ACTH) antibodies were used to detect pituitary hormones in the lesions. Since 2017, antibodies against the transcription factors Pit-1, T-Pit, and SF-1 have been used in difficult cases. The criteria of the 2017 WHO classification have been basic principles for classification since 2018 (Osamura et al. 2017). For differentiation of other sellar tumors, such as meningiomas, chordomas, or metastases, the use of additional antibodies was necessary. For these cases, it was possible to use a broad antibody spectrum. Autopsy pituitaries were generally studied by H&E and PAS sections. If any lesions were demonstrated in these specimens, additional immunostaining was performed. RESULTS: Multiple tumorous lesions with more than one pituitary neuroendocrine tumor (PitNET) respectively adenoma make up 1.4% (232 cases) in our collection. Within the selected cases, synchronous multiple pituitary neuroendocrine tumors (PitNETs) account for 17.3%, PANCH cases (pituitary adenoma with neuronal choristoma) for 14.7%, PitNETs and posterior lobe tumors for 2.2%, PitNETs and metastases for 5.2%, PitNETs and mesenchymal tumors for 2.6%, PitNETs and cysts for 52.2%, and PitNETs and primary inflammation for 6.0%. The mean patient age was 53.8 years, with a standard deviation of 18.5 years. A total of 55.3% of the patients were female and 44.7% were male. From 1990 to 2018, there was a continuous increase in the number of multiple tumorous lesions. CONCLUSION: From our studies, we conclude that considering possible tumorous double lesions during surgeries and in preoperative X-ray analyses is recommended.


Assuntos
Adenoma , Cistos , Neoplasias Primárias Múltiplas , Tumores Neuroendócrinos , Doenças da Hipófise , Neoplasias Hipofisárias , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/patologia , Hipófise/patologia , Adenoma/patologia , Tumores Neuroendócrinos/patologia , Neoplasias Primárias Múltiplas/patologia , Inflamação
10.
Clin Epigenetics ; 14(1): 26, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180887

RESUMO

BACKGROUND: Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. RESULTS: To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350-1354, 2000. https://doi.org/10.1056/NEJM200011093431901 ) and Felsberg et al. (Clin Cancer Res 15(21):6683-6693, 2009. https://doi.org/10.1158/1078-0432.CCR-08-2801 ) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. CONCLUSION: Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , O(6)-Metilguanina-DNA Metiltransferase/genética , Sulfitos , Proteínas Supressoras de Tumor/genética
11.
Nature ; 603(7903): 885-892, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35165441

RESUMO

The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms-the blood-brain barrier-impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer's disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer's disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer's disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer's disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy.


Assuntos
Doença de Alzheimer , Encéfalo , Suscetibilidade a Doenças , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Estudo de Associação Genômica Ampla , Hipocampo/irrigação sanguínea , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Pericitos/metabolismo , Transcriptoma
12.
Glia ; 70(5): 935-960, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35092321

RESUMO

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α-syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α-syn induced by striatal injection of α-syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α-syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α-syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α-syn inclusion formation is not the major driver in the early phases of PD-like neurodegeneration, but that microglia, activated by diffusible, oligomeric α-syn, may play a key role in this process. Our findings uncover new features of α-syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α-syn spreading.


Assuntos
Doença de Parkinson , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Microglia/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson/genética , alfa-Sinucleína/genética
13.
J Neurointerv Surg ; 14(3): 286-290, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33947771

RESUMO

BACKGROUND: Recently, liquid embolic agents have emerged for the endovascular treatment of cerebral aneurysms. Here we describe the in vivo performance of a novel liquid embolization agent (GPX Embolic Device). METHODS: Elastase-induced aneurysms were embolized with a GPX prototype under balloon assistance. Digital subtraction angiography was performed pre-deployment and immediately after, and at 5, 10, and 30 min post-deployment in 10 rabbits and at 1 month in 8 rabbits. The early post-deployment intra-aneurysmal flow was graded as unchanged, moderately diminished, or completely absent. At 1 month the status of aneurysm occlusion was evaluated. Adhesion to catheter material and migration of GPX was assessed. RESULTS: The mean aneurysm neck diameter, width, and height were 3.6±1.0 mm, 3.0±0.8 mm, and 7.4±1.4 mm, respectively. The mean dome-to-neck ratio was 0.9±0.2. Complete stagnation of intra-aneurysmal flow was observed in 9 of 10 aneurysms (90%) within 30 min of device deployment. One aneurysm showed moderately diminished intra-aneurysmal flow at 30 min. At 1 month, 8 aneurysms were completely occluded. There was no evidence of GPX adhesion to the catheter material. Histologically, a leukocyte and foreign body reaction to GPX was detectable 28 days after embolization. CONCLUSIONS: This is the first preclinical study reporting the performance of a protype version of the GPX Embolic Device in a wide-neck aneurysm model. GPX showed promising results by achieving and maintaining high rates of complete angiographic occlusion, but may induce an inflammatory reaction.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Angiografia Digital , Animais , Angiografia Cerebral , Modelos Animais de Doenças , Embolização Terapêutica/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/terapia , Coelhos , Resultado do Tratamento
14.
World Neurosurg ; 159: e324-e333, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34942386

RESUMO

OBJECTIVE: Patients with a low micro-RNA-181d (miRNA-181d) level in glioblastoma tissue benefit most of carmustine wafer use. The study compares preoperative miRNA-181d plasma and tumor expression. This may form the base to decide, from a preoperative blood test, if carmustine wafer implantation is recommendable. METHODS: A total of 60 patients suffering from glioblastoma treated between 2018 and 2020 were enrolled prospectively. Preoperatively, blood was drawn and the plasma was isolated. Tumor specimens were collected. Blood samples from 30 healthy individuals served as a reference. MiRNA-181d expression in plasma and tumor were acquired as fold change, using quantitative reverse transcription-polymerase chain reaction. Results were correlated with relevant demographic, clinical, and histopathologic aspects of the cohort. Further factors like tumor volume as well as blood panel results were considered. The Cancer Genome Atlas analysis was performed to investigate specific miRNA-181d-protein interactions to elude how miRNA-181 impact therapy response to carmustine. RESULTS: Patients with glioblastoma showed a significant overexpression of miRNA-181d compared with healthy individuals (P = 0.029). There was a significant correlation between miRNA-181d expression in tumor tissue and plasma (P = 0.001, R = 0.51). The sensitivity of low miRNA-181d expression in plasma predicting low miRNA-181d tumor expression was 76.6%. Tumor volume, preoperative medication, and items of blood panel analysis did not influence the prognostic value of plasma miRNA-181d expression. The Cancer Genome Atlas analysis revealed 8 potential protein targets to be regulated by miRNA-181d. CONCLUSION: miRNA-181d seems to be a potential molecular marker that can reliably be detected in blood samples of patients with glioblastoma. It should therefore prospectively be evaluated as a potential preoperative prognostic marker regarding carmustine wafer implantation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Antineoplásicos Alquilantes , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Carmustina , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico
15.
Acta Neuropathol Commun ; 9(1): 187, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819156

RESUMO

In sporadic Creutzfeldt-Jakob disease (sCJD), the pathological changes appear to be restricted to the central nervous system. Only involvement of the trigeminal ganglion is widely accepted. The present study systematically examined the involvement of peripheral ganglia in sCJD utilizing the currently most sensitive technique for detecting prions in tissue morphologically. The trigeminal, nodose, stellate, and celiac ganglia, as well as ganglia of the cervical, thoracic and lumbar sympathetic trunk of 40 patients were analyzed with the paraffin-embedded tissue (PET)-blot method. Apart from the trigeminal ganglion, which contained protein aggregates in five of 19 prion type 1 patients, evidence of prion protein aggregation was only found in patients associated with type 2 prions. With the PET-blot, aggregates of prion protein type 2 were found in all trigeminal (17/17), in some nodose (5 of 7) and thoracic (3 of 6) ganglia, as well as in a few celiac (4 of 19) and lumbar (1 of 5) ganglia of sCJD patients. Whereas aggregates of both prion types may spread to dorsal root ganglia, more CNS-distant ganglia seem to be only involved in patients accumulating prion type 2. Whether the prion type association is due to selection by prion type-dependent replication, or due to a prion type-dependent property of axonal spread remains to be resolved in further studies.


Assuntos
Síndrome de Creutzfeldt-Jakob/metabolismo , Doenças Priônicas/metabolismo , Príons/metabolismo , Gânglio Trigeminal/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Gânglios Simpáticos/metabolismo , Gânglios Simpáticos/patologia , Humanos , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Doenças Priônicas/patologia , Gânglio Trigeminal/patologia
17.
Pathogens ; 10(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34684242

RESUMO

Fatal familial insomnia (FFI) belongs to the genetic human transmissible spongiform encephalopathies (TSE), such as genetic Creutzfeldt-Jakob disease (CJD) or Gerstmann-Straeussler-Scheinker syndrome (GSS). Here, we analyzed the properties of the pathological prion protein in six FFI cases by Western blot analysis, a protein aggregate stability assay, and aggregate deposition characteristics visualized with the paraffin-embedded tissue blot. While in all cases the unglycosylated fragment in Western blot analysis shared the same size with sporadic CJD prion type 2, the reticular/synaptic deposition pattern of the prion aggregates resembled the ones found in sporadic CJD type 1 (CJD types according to the Parchi classification from 1999). Regarding the conformational stability against denaturation with GdnHCl, FFI prion aggregates resembled CJD type 1 more than type 2. Our results suggest that the size of the proteinase-K-resistant fragments is not a valid criterion on its own. Additional criteria supplying information about conformational differences or similarities need to be taken into account. FFI may resemble a prion type with its own conformation sharing properties partly with type 1 and type 2 prions.

18.
FASEB J ; 35(7): e21691, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118085

RESUMO

Amyloid ß peptide (Aß) is the major pathogenic molecule in Alzheimer's disease (AD). BACE1 enzyme is essential for the generation of Aß. Deficiency of p38α-MAPK in neurons increases lysosomal degradation of BACE1 and decreases Aß deposition in the brain of APP-transgenic mice. However, the mechanisms mediating effects of p38α-MAPK are largely unknown. In this study, we used APP-transgenic mice and cultured neurons and observed that deletion of p38α-MAPK specifically in neurons decreased phosphorylation of Snapin at serine, increased retrograde transportation of BACE1 in axons and reduced BACE1 at synaptic terminals, which suggests that p38α-MAPK deficiency promotes axonal transportation of BACE1 from its predominant locations, axonal terminals, to lysosomes in the cell body. In vitro kinase assay revealed that p38α-MAPK directly phosphorylates Snapin. By further performing mass spectrometry analysis and site-directed mutagenic experiments in SH-SY5Y cell lines, we identified serine residue 112 as a p38α-MAPK-phosphorylating site on Snapin. Replacement of serine 112 with alanine did abolish p38α-MAPK knockdown-induced reduction of BACE1 activity and protein level, and transportation to lysosomes in SH-SY5Y cells. Taken together, our study suggests that activation of p38α-MAPK phosphorylates Snapin and inhibits the retrograde transportation of BACE1 in axons, which might exaggerate amyloid pathology in AD brain.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Ácido Aspártico Endopeptidases/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Presenilina-1/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Transporte Axonal , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Transporte Vesicular/genética
19.
Oncogene ; 40(31): 4955-4966, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34172934

RESUMO

A prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines derived from sporadic tumors i.e. from tumors not caused by an inherited genetic variant, HH/GLI signaling plays a subordinate role, because oncogenic mutations in HRAS, KRAS, or NRAS (collectively named oncRAS) inhibit the main HH target GLI1 via the MEK/ERK-axis, but simultaneously increase proliferation and tumorigenicity. oncRAS also modulate expression of stem cell markers in an isoform- and context-dependent manner. In Hh-driven murine ERMS that are caused by a Patched mutation, oncHRAS and mainly oncKRAS accelerate tumor development, whereas oncNRAS induces a more differentiated phenotype. These features occur when the oncRAS mutations are induced at the ERMS precursor stage, but not when induced in already established tumors. Moreover, in contrast to what is seen in human cell lines, oncRAS mutations do not alter Hh signaling activity and marginally affect expression of stem cell markers. Together, all three oncRAS mutations seem to be advantageous for ERMS cell lines despite inhibition of HH signaling and isoform-specific modulation of stem cell markers. In contrast, oncRAS mutations do not inhibit Hh-signaling in Hh-driven ERMS. In this model, oncRAS mutations seem to be advantageous for specific ERMS populations that occur within a specific time window during ERMS development. In addition, this window may be different for individual oncRAS isoforms, at least in the mouse.


Assuntos
Suscetibilidade a Doenças , Genes ras , Neoplasias/etiologia , Neoplasias/metabolismo , Isoformas de Proteínas/genética , Fatores Etários , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Mutação , Neoplasias/patologia , Células-Tronco Neoplásicas , Oncogenes , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
20.
Nature ; 595(7868): 565-571, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34153974

RESUMO

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Assuntos
Astrócitos/patologia , Encéfalo/patologia , COVID-19/diagnóstico , COVID-19/patologia , Plexo Corióideo/patologia , Microglia/patologia , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encéfalo/virologia , COVID-19/genética , COVID-19/fisiopatologia , Núcleo Celular/genética , Plexo Corióideo/metabolismo , Plexo Corióideo/fisiopatologia , Plexo Corióideo/virologia , Feminino , Humanos , Inflamação/virologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Análise de Célula Única , Transcriptoma , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA