Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
ChemMedChem ; 19(7): e202300548, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381042

RESUMO

Several novel chemical series were identified that modulate glucocerebrosidase (GCase). Compounds from these series are active on glucosylceramide, unlike other known GCase modulators. We obtained GCase crystal structures with two compounds that have distinct chemotypes. Positive allosteric modulators bind to a site on GCase and induce conformational changes, but also induce an equilibrium state between monomer and dimer.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Glucosilceramidase/química , Glucosilceramidase/metabolismo , Glucosilceramidas , Hidrólise , Doença de Gaucher/tratamento farmacológico
2.
MAbs ; 15(1): 2289681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084840

RESUMO

Gremlin-1, a high-affinity antagonist of bone morphogenetic proteins (BMP)-2, -4, and -7, is implicated in tumor initiation and progression. Increased gremlin-1 expression, and therefore suppressed BMP signaling, correlates with poor prognosis in a range of cancer types. A lack of published work using therapeutic modalities has precluded the testing of the hypothesis that blocking the gremlin-1/BMP interaction will provide benefits to patients. To address this shortfall, we developed ginisortamab (UCB6114), a first-in-class clinical anti-human gremlin-1 antibody, currently in clinical development for the treatment of cancer, along with its murine analog antibody Ab7326 mouse immunoglobulin G1 (mIgG1). Surface plasmon resonance assays revealed that ginisortamab and Ab7326 mIgG1 had similar affinities for human and mouse gremlin-1, with mean equilibrium dissociation constants of 87 pM and 61 pM, respectively. The gremlin-1/Ab7326 antigen-binding fragment (Fab) crystal structure revealed a gremlin-1 dimer with a Fab molecule bound to each monomer that blocked BMP binding. In cell culture experiments, ginisortamab fully blocked the activity of recombinant human gremlin-1, and restored BMP signaling pathways in human colorectal cancer (CRC) cell lines. Furthermore, in a human CRC - fibroblast co-culture system where gremlin-1 is produced by the fibroblasts, ginisortamab restored BMP signaling in both the CRC cells and fibroblasts, demonstrating its activity in a relevant human tumor microenvironment model. The safety and efficacy of ginisortamab are currently being evaluated in a Phase 1/2 clinical trial in patients with advanced solid tumors (NCT04393298).


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Animais , Camundongos , Linhagem Celular , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Chem Sci ; 14(27): 7524-7536, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449080

RESUMO

Knowledge of protein dynamics is fundamental to the understanding of biological processes, with NMR and 2D-IR spectroscopy being two of the principal methods for studying protein dynamics. Here, we combine these two methods to gain a new understanding of the complex mechanism of a cytokine:receptor interaction. The dynamic nature of many cytokines is now being recognised as a key property in the signalling mechanism. Interleukin-17s (IL-17) are proinflammatory cytokines which, if unregulated, are associated with serious autoimmune diseases such as psoriasis, and although there are several therapeutics on the market for these conditions, small molecule therapeutics remain elusive. Previous studies, exploiting crystallographic methods alone, have been unable to explain the dramatic differences in affinity observed between IL-17 dimers and their receptors, suggesting there are factors that cannot be fully explained by the analysis of static structures alone. Here, we show that the IL-17 family of cytokines have varying degrees of flexibility which directly correlates to their receptor affinities. Small molecule inhibitors of the cytokine:receptor interaction are usually thought to function by either causing steric clashes or structural changes. However, our results, supported by other biophysical methods, provide evidence for an alternate mechanism of inhibition, in which the small molecule rigidifies the protein, causing a reduction in receptor affinity. The results presented here indicate an induced fit model of cytokine:receptor binding, with the more flexible cytokines having a higher affinity. Our approach could be applied to other systems where the inhibition of a protein-protein interaction has proved intractable, for example due to the flat, featureless nature of the interface. Targeting allosteric sites which modulate protein dynamics, opens up new avenues for novel therapeutic development.

4.
ACS Chem Biol ; 16(9): 1757-1769, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34406751

RESUMO

Cysteine-rich knob domains found in the ultralong complementarity determining regions of a subset of bovine antibodies are capable of functioning autonomously as 3-6 kDa peptides. While they can be expressed recombinantly in cellular systems, in this paper we show that knob domains are also readily amenable to a chemical synthesis, with a co-crystal structure of a chemically synthesized knob domain in complex with an antigen showing structural equivalence to the biological product. For drug discovery, following the immunization of cattle, knob domain peptides can be synthesized directly from antibody sequence data, combining the power and diversity of the bovine immune repertoire with the ability to rapidly incorporate nonbiological modifications. We demonstrate that, through rational design with non-natural amino acids, a paratope diversity can be massively expanded, in this case improving the efficacy of an allosteric peptide. As a potential route to further improve stability, we also performed head-to-tail cyclizations, exploiting the proximity of the N and C termini to synthesize functional, fully cyclic antibody fragments. Lastly, we highlight the stability of knob domains in plasma and, through pharmacokinetic studies, use palmitoylation as a route to extend the plasma half-life of knob domains in vivo. This study presents an antibody-derived medicinal chemistry platform, with protocols for solid-phase synthesis of knob domains, together with the characterization of their molecular structures, in vitro pharmacology, and pharmacokinetics.


Assuntos
Regiões Determinantes de Complementaridade/química , Fragmentos de Imunoglobulinas/química , Peptídeos Cíclicos/síntese química , Sequência de Aminoácidos , Animais , Bovinos , Fragmentos de Imunoglobulinas/sangue , Fragmentos de Imunoglobulinas/farmacologia , Masculino , Modelos Moleculares , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/farmacocinética , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Ratos Sprague-Dawley , Técnicas de Síntese em Fase Sólida , Espectrometria de Massas em Tandem , Termodinâmica
5.
J Med Chem ; 64(10): 6413-6522, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34003642

RESUMO

This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.


Assuntos
Descoberta de Drogas , Receptor de Pregnano X/metabolismo , Sítios de Ligação , Citocromo P-450 CYP3A/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Simulação de Dinâmica Molecular , Receptor de Pregnano X/antagonistas & inibidores , Rifampina/química , Rifampina/metabolismo , Relação Estrutura-Atividade
6.
J Med Chem ; 61(21): 9647-9665, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30272964

RESUMO

A series of 8-hydroxy quinolines were identified as potent inhibitors of catechol O-methyltransferase (COMT) with selectivity for the membrane-bound form of the enzyme. Small substituents at the 7-position of the quinoline were found to increase metabolic stability without sacrificing potency. Compounds with good pharmacokinetics and brain penetration were identified and demonstrated in vivo modulation of dopamine metabolites in the brain. An X-ray cocrystal structure of compound 21 in the S-COMT active site shows chelation of the active site magnesium similar to catechol-based inhibitors. These compounds should prove useful for treatment of many neurological and psychiatric conditions associated with compromised cortical dopamine signaling.


Assuntos
Inibidores de Catecol O-Metiltransferase/química , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Desenho de Fármacos , Oxiquinolina/química , Oxiquinolina/farmacologia , Animais , Encéfalo/metabolismo , Catecol O-Metiltransferase/química , Inibidores de Catecol O-Metiltransferase/metabolismo , Inibidores de Catecol O-Metiltransferase/farmacocinética , Masculino , Camundongos , Modelos Moleculares , Oxiquinolina/metabolismo , Oxiquinolina/farmacocinética , Conformação Proteica , Ratos , Distribuição Tecidual
7.
PLoS One ; 8(7): e69228, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23976922

RESUMO

Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchange. Research over the past decade has implicated the peptide N-terminus in modulating the ability of HLA-DM to target a given MHC class II:peptide combination. In particular, attention has been focused on both the hydrogen bonds between MHC class II and peptide, and the occupancy of the P1 anchor pocket. We sought to solve the crystal structure of a HLA-DR1 molecule containing a truncated hemagglutinin peptide missing three N-terminal residues compared to the full-length sequence (residues 306-318) to determine the nature of the MHC class II:peptide species that binds HLA-DM. Here we present structural evidence that HLA-DR1 that is loaded with a peptide truncated to the P1 anchor residue such that it cannot make select hydrogen bonds with the peptide N-terminus, adopts the same conformation as molecules loaded with full-length peptide. HLA-DR1:peptide combinations that were unable to engage up to four key hydrogen bonds were also unable to bind HLA-DM, while those truncated to the P2 residue bound well. These results indicate that the conformational changes in MHC class II molecules that are recognized by HLA-DM occur after disengagement of the P1 anchor residue.


Assuntos
Antígenos HLA-D/metabolismo , Antígeno HLA-DR1/química , Antígeno HLA-DR1/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Hemaglutininas/química , Hemaglutininas/metabolismo , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ressonância de Plasmônio de Superfície
8.
Cell ; 151(7): 1557-68, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260142

RESUMO

HLA-DR molecules bind microbial peptides in an endosomal compartment and present them on the cell surface for CD4 T cell surveillance. HLA-DM plays a critical role in the endosomal peptide selection process. The structure of the HLA-DM-HLA-DR complex shows major rearrangements of the HLA-DR peptide-binding groove. Flipping of a tryptophan away from the HLA-DR1 P1 pocket enables major conformational changes that position hydrophobic HLA-DR residues into the P1 pocket. These conformational changes accelerate peptide dissociation and stabilize the empty HLA-DR peptide-binding groove. Initially, incoming peptides have access to only part of the HLA-DR groove and need to compete with HLA-DR residues for access to the P2 site and the hydrophobic P1 pocket. This energetic barrier creates a rapid and stringent selection process for the highest-affinity binders. Insertion of peptide residues into the P2 and P1 sites reverses the conformational changes, terminating selection through DM dissociation.


Assuntos
Antígenos HLA-D/química , Antígenos HLA-D/metabolismo , Antígeno HLA-DR1/química , Antígeno HLA-DR1/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
9.
Curr Opin Immunol ; 24(1): 105-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138314

RESUMO

HLA-DM serves a critical function in the loading and editing of peptides on MHC class II (MHCII) molecules. Recent data showed that the interaction cycle between MHCII molecules and HLA-DM is dependent on the occupancy state of the peptide binding groove. Empty MHCII molecules form stable complexes with HLA-DM, which are disrupted by binding of high-affinity peptide. Interestingly, MHCII molecules with fully engaged peptides cannot interact with HLA-DM, and prior dissociation of the peptide N-terminus from the groove is required for HLA-DM binding. There are significant similarities to the peptide loading process for MHC class I molecules, even though it is executed by a distinct set of proteins in a different cellular compartment.


Assuntos
Apresentação de Antígeno/fisiologia , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/metabolismo , Animais , Humanos
10.
Nat Immunol ; 12(1): 54-61, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21131964

RESUMO

The mechanisms of HLA-DM-catalyzed peptide exchange remain uncertain. Here we found that all stages of the interaction of HLA-DM with HLA-DR were dependent on the occupancy state of the peptide-binding groove. High-affinity peptides were protected from removal by HLA-DM through two mechanisms: peptide binding induced the dissociation of a long-lived complex of empty HLA-DR and HLA-DM, and high-affinity HLA-DR-peptide complexes bound HLA-DM only very slowly. Nonbinding covalent HLA-DR-peptide complexes were converted into efficient HLA-DM binders after truncation of an N-terminal peptide segment that emptied the P1 pocket and disrupted conserved hydrogen bonds to HLA-DR. HLA-DM thus binds only to HLA-DR conformers in which a critical part of the binding site is already vacant because of spontaneous peptide motion.


Assuntos
Antígenos HLA-D/metabolismo , Antígeno HLA-DR2/metabolismo , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Apresentação de Antígeno , Células CHO , Catálise , Cricetinae , Cricetulus , Antígenos HLA-D/química , Antígenos HLA-D/genética , Antígeno HLA-DR2/química , Antígeno HLA-DR2/genética , Humanos , Modelos Químicos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Ressonância de Plasmônio de Superfície , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA