Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
4.
Bioinformatics ; 38(20): 4677-4686, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040167

RESUMO

MOTIVATION: Somatic copy-number alterations (SCNAs) play an important role in cancer development. Systematic noise in sequencing and array data present a significant challenge to the inference of SCNAs for cancer genome analyses. As part of The Cancer Genome Atlas, the Broad Institute Genome Characterization Center developed the Tangent normalization method to generate copy-number profiles using data from single-nucleotide polymorphism (SNP) arrays and whole-exome sequencing (WES) technologies for over 10 000 pairs of tumors and matched normal samples. Here, we describe the Tangent method, which uses a unique linear combination of normal samples as a reference for each tumor sample, to subtract systematic errors that vary across samples. We also describe a modification of Tangent, called Pseudo-Tangent, which enables denoising through comparisons between tumor profiles when few normal samples are available. RESULTS: Tangent normalization substantially increases signal-to-noise ratios (SNRs) compared to conventional normalization methods in both SNP array and WES analyses. Tangent and Pseudo-Tangent normalizations improve the SNR by reducing noise with minimal effect on signal and exceed the contribution of other steps in the analysis such as choice of segmentation algorithm. Tangent and Pseudo-Tangent are broadly applicable and enable more accurate inference of SCNAs from DNA sequencing and array data. AVAILABILITY AND IMPLEMENTATION: Tangent is available at https://github.com/broadinstitute/tangent and as a Docker image (https://hub.docker.com/r/broadinstitute/tangent). Tangent is also the normalization method for the copy-number pipeline in Genome Analysis Toolkit 4 (GATK4). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Software , Humanos , Algoritmos , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética
5.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831375

RESUMO

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Assuntos
Heterogeneidade Genética , Neoplasias/genética , Variações do Número de Cópias de DNA , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
6.
Nat Genet ; 52(3): 306-319, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024998

RESUMO

About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.


Assuntos
Carcinogênese/genética , Rearranjo Gênico/genética , Genoma Humano/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias/genética , Retroelementos/genética , Humanos , Neoplasias/patologia
7.
Nature ; 578(7793): 112-121, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025012

RESUMO

A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1-7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancer-frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.


Assuntos
Variação Genética , Genoma Humano/genética , Neoplasias/genética , Rearranjo Gênico/genética , Genômica , Humanos , Mutagênese Insercional , Telomerase/genética
8.
Nature ; 578(7793): 122-128, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025013

RESUMO

Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)4, we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.


Assuntos
Evolução Molecular , Genoma Humano/genética , Neoplasias/genética , Reparo do DNA/genética , Dosagem de Genes , Genes Supressores de Tumor , Variação Genética , Humanos , Mutagênese Insercional/genética
10.
Nat Med ; 24(7): 968-977, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29808010

RESUMO

The role of KRAS, when activated through canonical mutations, has been well established in cancer1. Here we explore a secondary means of KRAS activation in cancer: focal high-level amplification of the KRAS gene in the absence of coding mutations. These amplifications occur most commonly in esophageal, gastric and ovarian adenocarcinomas2-4. KRAS-amplified gastric cancer models show marked overexpression of the KRAS protein and are insensitive to MAPK blockade owing to their capacity to adaptively respond by rapidly increasing KRAS-GTP levels. Here we demonstrate that inhibition of the guanine-exchange factors SOS1 and SOS2 or the protein tyrosine phosphatase SHP2 can attenuate this adaptive process and that targeting these factors, both genetically and pharmacologically, can enhance the sensitivity of KRAS-amplified models to MEK inhibition in both in vitro and in vivo settings. These data demonstrate the relevance of copy-number amplification as a mechanism of KRAS activation, and uncover the therapeutic potential for targeting of these tumors through combined SHP2 and MEK inhibition.


Assuntos
Neoplasias Esofágicas/genética , Amplificação de Genes , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Piridonas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Neoplasias Gástricas/patologia
11.
Cancer Res ; 78(13): 3421-3431, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29724721

RESUMO

Osteosarcoma is a debilitating bone cancer that affects humans, especially children and adolescents. A homologous form of osteosarcoma spontaneously occurs in dogs, and its differential incidence observed across breeds allows for the investigation of tumor mutations in the context of multiple genetic backgrounds. Using whole-exome sequencing and dogs from three susceptible breeds (22 golden retrievers, 21 Rottweilers, and 23 greyhounds), we found that osteosarcoma tumors show a high frequency of somatic copy-number alterations (SCNA), affecting key oncogenes and tumor-suppressor genes. The across-breed results are similar to what has been observed for human osteosarcoma, but the disease frequency and somatic mutation counts vary in the three breeds. For all breeds, three mutational signatures (one of which has not been previously reported) and 11 significantly mutated genes were identified. TP53 was the most frequently altered gene (83% of dogs have either mutations or SCNA in TP53), recapitulating observations in human osteosarcoma. The second most frequently mutated gene, histone methyltransferase SETD2, has known roles in multiple cancers, but has not previously been strongly implicated in osteosarcoma. This study points to the likely importance of histone modifications in osteosarcoma and highlights the strong genetic similarities between human and dog osteosarcoma, suggesting that canine osteosarcoma may serve as an excellent model for developing treatment strategies in both species.Significance: Canine osteosarcoma genomics identify SETD2 as a possible oncogenic driver of osteosarcoma, and findings establish the canine model as a useful comparative model for the corresponding human disease. Cancer Res; 78(13); 3421-31. ©2018 AACR.


Assuntos
Doenças do Cão/genética , Histona-Lisina N-Metiltransferase/genética , Osteossarcoma/genética , Animais , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Modelos Animais de Doenças , Doenças do Cão/patologia , Cães , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Osteossarcoma/patologia , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
12.
Cancer Cell ; 33(4): 676-689.e3, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29622463

RESUMO

Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy.


Assuntos
Aneuploidia , Carcinoma de Células Escamosas/genética , Genômica/métodos , Proteína Supressora de Tumor p53/genética , Ciclo Celular , Proliferação de Células , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Bases de Dados Genéticas , Humanos , Taxa de Mutação
15.
Artigo em Inglês | MEDLINE | ID: mdl-28713588

RESUMO

High-grade meningiomas frequently recur and are associated with high rates of morbidity and mortality. To determine the factors that promote the development and evolution of these tumors, we analyzed the genomes of 134 high-grade meningiomas and compared this information with data from 587 previously published meningiomas. High-grade meningiomas had a higher mutation burden than low-grade meningiomas but did not harbor any statistically significant mutated genes aside from NF2. High-grade meningiomas also possessed significantly elevated rates of chromosomal gains and losses, especially among tumors with monosomy 22. Meningiomas previously treated with adjuvant radiation had significantly more copy number alterations than radiation-induced or radiation-naïve meningiomas. Across serial recurrences, genomic disruption preceded the emergence of nearly all mutations, remained largely uniform across time, and when present in low-grade meningiomas, correlated with subsequent progression to a higher grade. In contrast to the largely stable copy number alterations, mutations were strikingly heterogeneous across tumor recurrences, likely due to extensive geographic heterogeneity in the primary tumor. While high-grade meningiomas harbored significantly fewer overtly targetable alterations than low-grade meningiomas, they contained numerous mutations that are predicted to be neoantigens, suggesting that immunologic targeting may be of therapeutic value.

16.
Nature ; 547(7663): 311-317, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28726821

RESUMO

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Assuntos
Análise Mutacional de DNA , Genoma Humano/genética , Meduloblastoma/classificação , Meduloblastoma/genética , Sequenciamento Completo do Genoma , Carcinogênese/genética , Proteínas de Transporte/genética , Estudos de Coortes , Metilação de DNA , Conjuntos de Dados como Assunto , Epistasia Genética , Genômica , Humanos , Terapia de Alvo Molecular , Proteínas Musculares/genética , Mutação , Oncogenes/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética
17.
Gastroenterology ; 153(2): 536-549.e26, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28522256

RESUMO

BACKGROUND & AIMS: Early-onset gastric cancer, which develops in patients younger than most gastric cancers, is usually detected at advanced stages, has diffuse histologic features, and occurs more frequently in women. We investigated somatic genomic alterations associated with the unique characteristics of sporadic diffuse gastric cancers (DGCs) from younger patients. METHODS: We conducted whole exome and RNA sequence analyses of 80 resected DGC samples from patients 45 years old or younger in Korea. Patients with pathogenic germline mutations in CDH1, TP53, and ATM were excluded from the onset of this analysis, given our focus on somatic alterations. We used MutSig2CV to evaluate the significance of mutated genes. We recruited 29 additional early-onset Korean DGC samples and performed SNP6.0 array and targeted sequencing analyses of these 109 early-onset DGC samples (54.1% female, median age, 38 years). We compared the SNP6.0 array and targeted sequencing data of the 109 early-onset DGC samples with those from diffuse-type stomach tumor samples collected from 115 patients in Korea who were 46 years or older (late onset) at the time of diagnosis (controls; 29.6% female, median age, 67 years). We compared patient survival times among tumors from different subgroups and with different somatic mutations. We performed gene silencing of RHOA or CDH1 in DGC cells with small interfering RNAs for cell-based assays. RESULTS: We identified somatic mutations in the following genes in a significant number of early-onset DGCs: the cadherin 1 gene (CDH1), TP53, ARID1A, KRAS, PIK3CA, ERBB3, TGFBR1, FBXW7, RHOA, and MAP2K1. None of 109 early-onset DGC cases had pathogenic germline CDH1 mutations. A higher proportion of early-onset DGCs had mutations in CDH1 (42.2%) or TGFBR1 (7.3%) compared with control DGCs (17.4% and 0.9%, respectively) (P < .001 and P = .014 for CDH1 and TGFBR1, respectively). In contrast, a smaller proportion of early-onset DGCs contained mutations in RHOA (9.2%) than control DGCs (19.1%) (P = .033). Late-onset DGCs in The Cancer Genome Atlas also contained less frequent mutations in CDH1 and TGFBR1 and more frequent RHOA mutations, compared with early-onset DGCs. Early-onset DGCs from women contained significantly more mutations in CDH1 or TGFBR1 than early-onset DGCs from men. CDH1 alterations, but not RHOA mutations, were associated with shorter survival times in patients with early-onset DGCs (hazard ratio, 3.4; 95% confidence interval, 1.5-7.7). RHOA activity was reduced by an R5W substitution-the RHOA mutation most frequently detected in early-onset DGCs. Silencing of CDH1, but not RHOA, increased migratory activity of DGC cells. CONCLUSIONS: In an integrative genomic analysis, we found higher proportions of early-onset DGCs to contain somatic mutations in CDH1 or TGFBR1 compared with late-onset DGCs. However, a smaller proportion of early-onset DGCs contained somatic mutations in RHOA than late-onset DGCs. CDH1 alterations, but not RHOA mutations, were associated with shorter survival times of patients, which might account for the aggressive clinical course of early-onset gastric cancer. Female predominance in early-onset gastric cancer may be related to relatively high rates of somatic CDH1 and TGFBR1 mutations in this population.


Assuntos
Idade de Início , Caderinas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Neoplasias Gástricas/genética , Proteína rhoA de Ligação ao GTP/genética , Adulto , Antígenos CD , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa , Humanos , Masculino , Pessoa de Meia-Idade , Receptor do Fator de Crescimento Transformador beta Tipo I , República da Coreia , Fatores Sexuais , Adulto Jovem
18.
PLoS One ; 12(4): e0176045, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426752

RESUMO

Gastric cancer, a leading worldwide cause of cancer mortality, shows high geographic and ethnic variation in incidence rates, which are highest in East Asia. The anatomic locations and clinical behavior also differ by geography, leading to the controversial idea that Eastern and Western forms of the disease are distinct. In view of these differences, we investigated whether gastric cancers from Eastern and Western patients show distinct genomic profiles. We used high-density profiling of somatic copy-number aberrations to analyze the largest collection to date of gastric adenocarcinomas and utilized genotyping data to rigorously annotate ethnic status. The size of this collection allowed us to accurately identify regions of significant copy-number alteration and separately to evaluate tumors arising in Eastern and Western patients. Among molecular subtypes classified by The Cancer Genome Atlas, the frequency of gastric cancers showing chromosomal instability was modestly higher in Western patients. After accounting for this difference, however, gastric cancers arising in Easterners and Westerners have highly similar somatic copy-number patterns. Only one genomic event, focal deletion of the phosphatase gene PTPRD, was significantly enriched in Western cases, though also detected in Eastern cases. Thus, despite the different risk factors and clinical features, gastric cancer appears to be a fundamentally similar disease in both populations and the divergent clinical outcomes cannot be ascribed to different underlying structural somatic genetic aberrations.


Assuntos
Adenocarcinoma/genética , Povo Asiático/genética , Variações do Número de Cópias de DNA , Neoplasias Gástricas/genética , População Branca/genética , Humanos
19.
Neuro Oncol ; 19(7): 986-996, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104717

RESUMO

BACKGROUND: Clinical genomics platforms are needed to identify targetable alterations, but implementation of these technologies and best practices in routine clinical pediatric oncology practice are not yet well established. METHODS: Profile is an institution-wide prospective clinical research initiative that uses targeted sequencing to identify targetable alterations in tumors. OncoPanel, a multiplexed targeted exome-sequencing platform that includes 300 cancer-causing genes, was used to assess single nucleotide variants and rearrangements/indels. Alterations were annotated (Tiers 1-4) based on clinical significance, with Tier 1 alterations having well-established clinical utility. OncoCopy, a clinical genome-wide array comparative genomic hybridization (aCGH) assay, was also performed to evaluate copy number alterations and better define rearrangement breakpoints. RESULTS: Cancer genomes of 203 pediatric brain tumors were profiled across histological subtypes, including 117 samples analyzed by OncoPanel, 146 by OncoCopy, and 60 tumors subjected to both methodologies. OncoPanel revealed clinically relevant alterations in 56% of patients (44 cancer mutations and 20 rearrangements), including BRAF alterations that directed the use of targeted inhibitors. Rearrangements in MYB-QKI, MYBL1, BRAF, and FGFR1 were also detected. Furthermore, while copy number profiles differed across histologies, the combined use of OncoPanel and OncoCopy identified subgroup-specific alterations in 89% (17/19) of medulloblastomas. CONCLUSION: The combination of OncoPanel and OncoCopy multiplex genomic assays can identify critical diagnostic, prognostic, and treatment-relevant alterations and represents an effective precision medicine approach for clinical evaluation of pediatric brain tumors.


Assuntos
Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA , Exoma , Genômica/métodos , Medicina de Precisão/métodos , Neoplasias Encefálicas/diagnóstico , Criança , Hibridização Genômica Comparativa , Dosagem de Genes , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
20.
Neoplasia ; 19(2): 75-83, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28038320

RESUMO

Mutation of the PARK2 gene can promote both Parkinson's Disease and cancer, yet the underlying mechanisms of how PARK2 controls cellular physiology is incompletely understood. Here, we show that the PARK2 tumor suppressor controls the apoptotic regulator BCL-XL and modulates programmed cell death. Analysis of approximately 10,000 tumor genomes uncovers a striking pattern of mutual exclusivity between PARK2 genetic loss and amplification of BCL2L1, implicating these genes in a common pathway. PARK2 directly binds to and ubiquitinates BCL-XL. Inactivation of PARK2 leads to aberrant accumulation of BCL-XL both in vitro and in vivo, and cancer-specific mutations in PARK2 abrogate the ability of the ubiquitin E3 ligase to target BCL-XL for degradation. Furthermore, PARK2 modulates mitochondrial depolarization and apoptosis in a BCL-XL-dependent manner. Thus, like genes at the nodal points of growth arrest pathways such as p53, the PARK2 tumor suppressor is able to exert its antiproliferative effects by regulating both cell cycle progression and programmed cell death.


Assuntos
Apoptose , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína bcl-X/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Mitocôndrias/metabolismo , Mutação , Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Ubiquitina-Proteína Ligases/genética , Proteína bcl-X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA