Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Sci Rep ; 14(1): 3236, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332227

RESUMO

Machado-Joseph disease (MJD) is a neurodegenerative disorder characterized by widespread neuronal death affecting the cerebellum. Cell therapy can trigger neuronal replacement and neuroprotection through bystander effects providing a therapeutic option for neurodegenerative diseases. Here, human control (CNT) and MJD iPSC-derived neuroepithelial stem cells (NESC) were established and tested for their therapeutic potential. Cells' neuroectodermal phenotype was demonstrated. Brain organoids obtained from the Control NESC showed higher mRNA levels of genes related to stem cells' bystander effects, such as BDNF, NEUROD1, and NOTCH1, as compared with organoids produced from MJD NESC, suggesting that Control NESC have a higher therapeutic potential. Graft-derived glia and neurons, such as cells positive for markers of cerebellar neurons, were detected six months after NESC transplantation in mice cerebella. The graft-derived neurons established excitatory and inhibitory synapses in the host cerebella, although CNT neurons exhibited higher excitatory synapse numbers compared with MJD neurons. Cell grafts, mainly CNT NESC, sustained the bystander effects through modulation of inflammatory interleukins (IL1B and IL10), neurotrophic factors (NGF), and neurogenesis-related proteins (Msi1 and NeuroD1), for six months in the mice cerebella. Altogether this study demonstrates the long-lasting therapeutic potential of human iPSC-derived NESC in the cerebellum.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph , Camundongos , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Efeito Espectador , Neurônios/metabolismo , Cerebelo/metabolismo , Doença de Machado-Joseph/metabolismo
2.
Tissue Barriers ; : 2315702, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346163

RESUMO

The development of new therapies is hampered by the lack of predictive, and patient-relevant in vitro models. Organ-on-chip (OOC) technologies can potentially recreate physiological features and hold great promise for tissue and disease modeling. However, the non-standardized design of these chips and perfusion control systems has been a barrier to quantitative high-throughput screening (HTS). Here we present a scalable OOC microfluidic platform for applied kinetic in vitro assays (AKITA) that is applicable for high, medium, and low throughput. Its standard 96-well plate and 384-well plate layouts ensure compatibility with existing laboratory workflows and high-throughput data collection and analysis tools. The AKITA plate is optimized for the modeling of vascularized biological barriers, primarily the blood-brain barrier, skin, and lung, with precise flow control on a custom rocker. The integration of trans-epithelial electrical resistance (TEER) sensors allows rapid and repeated monitoring of barrier integrity over long time periods. Together with automated liquid handling and compound permeability testing analyses, we demonstrate the flexibility of the AKITA platform for establishing human-relevant models for preclinical drug and precision medicine's efficacy, toxicity, and permeability under near-physiological conditions.

3.
Mol Cell Neurosci ; 128: 103919, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307302

RESUMO

Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. Despite extensive research efforts, the molecular and cellular changes that precede neurodegeneration in PD are poorly understood. To address this, here we describe the use of patient specific human midbrain organoids harboring the SNCA triplication to investigate mechanisms underlying dopaminergic degeneration. Our midbrain organoid model recapitulates key pathological hallmarks of PD, including the aggregation of α-synuclein and the progressive loss of dopaminergic neurons. We found that these pathological hallmarks are associated with an increase in senescence associated cellular phenotypes in astrocytes including nuclear lamina defects, the presence of senescence associated heterochromatin foci, and the upregulation of cell cycle arrest genes. These results suggest a role of pathological α-synuclein in inducing astrosenescence which may, in turn, increase the vulnerability of dopaminergic neurons to degeneration.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Astrócitos/metabolismo , Doenças Neurodegenerativas/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Organoides/metabolismo , Organoides/patologia , Substância Negra/metabolismo
4.
Life Sci Alliance ; 7(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38195117

RESUMO

Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved CLN3 gene. Here, we generated cln3 morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant cln3 larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs. Importantly, in-depth metabolomics and lipidomics analyses revealed significant accumulation of several glycerophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for CLN3 disease based on independent studies in other organisms. We could also demonstrate GPD accumulation in human-induced pluripotent stem cell-derived cerebral organoids carrying a pathogenic variant for CLN3 Our models revealed that GPDs accumulate at very early stages of life in the absence of functional CLN3 and highlight glycerophosphoinositol and BMP as promising biomarker candidates for pre-symptomatic CLN3 disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipofuscinoses Ceroides Neuronais , Animais , Humanos , Ésteres do Colesterol , Glicoproteínas de Membrana/genética , Metabolômica , Chaperonas Moleculares , Lipofuscinoses Ceroides Neuronais/genética , Peixe-Zebra/genética
5.
NPJ Parkinsons Dis ; 9(1): 166, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110400

RESUMO

The mechanisms underlying Parkinson's disease (PD) etiology are only partially understood despite intensive research conducted in the field. Recent evidence suggests that early neurodevelopmental defects might play a role in cellular susceptibility to neurodegeneration. To study the early developmental contribution of GBA mutations in PD we used patient-derived iPSCs carrying a heterozygous N370S mutation in the GBA gene. Patient-specific midbrain organoids displayed GBA-PD relevant phenotypes such as reduction of GCase activity, autophagy impairment, and mitochondrial dysfunction. Genome-scale metabolic (GEM) modeling predicted changes in lipid metabolism which were validated with lipidomics analysis, showing significant differences in the lipidome of GBA-PD. In addition, patient-specific midbrain organoids exhibited a decrease in the number and complexity of dopaminergic neurons. This was accompanied by an increase in the neural progenitor population showing signs of oxidative stress-induced damage and premature cellular senescence. These results provide insights into how GBA mutations may lead to neurodevelopmental defects thereby predisposing to PD pathology.

6.
Commun Biol ; 6(1): 1179, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985891

RESUMO

The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.


Assuntos
Células-Tronco Neurais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , NAD/metabolismo , Células-Tronco Neurais/metabolismo , Mitocôndrias/metabolismo , Neurônios Dopaminérgicos/metabolismo
7.
Elife ; 122023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963071

RESUMO

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.


Humans contains around 650 skeletal muscles which allow the body to move around and maintain its posture. Skeletal muscles are made up of individual cells that bundle together into highly organized structures. If this group of muscles fail to develop correctly in the embryo and/or fetus, this can lead to muscular disorders that can make it painful and difficult to move. One way to better understand how skeletal muscles are formed, and how this process can go wrong, is to grow them in the laboratory. This can be achieved using induced pluripotent stem cells (iPSCs), human adult cells that have been 'reprogrammed' to behave like cells in the embryo that can develop in to almost any cell in the body. The iPSCs can then be converted into specific cell types in the laboratory, including the cells that make up skeletal muscle. Here, Mavrommatis et al. created a protocol for developing iPSCs into three-dimensional organoids which resemble how cells of the skeletal muscle look and arrange themselves in the fetus. To form the skeletal muscle organoid, Mavrommatis et al. treated iPSCs that were growing in a three-dimensional environment with various factors that are found early on in development. This caused the iPSCs to organize themselves in to embryonic and fetal structures that will eventually give rise to the parts of the body that contain skeletal muscle, such as the limbs. Within the organoid were cells that produced Pax7, a protein commonly found in myogenic progenitors that specifically mature into skeletal muscle cells in the fetus. Pax 7 is also present in 'satellite cells' that help to regrow damaged skeletal muscle in adults. Indeed, Mavrommatis et al. found that the myogenic progenitors produced by the organoid were able to regenerate muscle when transplanted in to adult mice. These findings suggest that this organoid protocol can generate cells that will give rise to skeletal muscle. In the future, these lab-grown progenitors could potentially be created from cells isolated from patients and used to repair muscle injuries. The organoid model could also provide new insights in to how skeletal muscles develop in the fetus, and how genetic mutations linked with muscular disorders disrupt this process.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciação Celular , Feto/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX7/metabolismo
8.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947643

RESUMO

Parkinson's disease (PD) is the most common movement disorder, characterized by the progressive loss of dopaminergic neurons from the nigrostriatal system. Currently, there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Mesenchymal stem cells (MSCs) are one of the most extensively studied cell sources for regenerative medicine applications, particularly due to the release of soluble factors and vesicles, known as secretome. The main goal of this work was to address the therapeutic potential of the secretome collected from bone-marrow-derived MSCs (BM-MSCs) using different models of the disease. Firstly, we took advantage of an optimized human midbrain-specific organoid system to model PD in vitro using a neurotoxin-induced model through 6-hydroxydopamine (6-OHDA) exposure. In vivo, we evaluated the effects of BM-MSC secretome comparing two different routes of secretome administration: intracerebral injections (a two-site single administration) against multiple systemic administration. The secretome of BM-MSCs was able to protect from dopaminergic neuronal loss, these effects being more evident in vivo. The BM-MSC secretome led to motor function recovery and dopaminergic loss protection; however, multiple systemic administrations resulted in larger therapeutic effects, making this result extremely relevant for potential future clinical applications.


Assuntos
Células-Tronco Mesenquimais , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Secretoma , Encéfalo , Oxidopamina , Organoides
9.
Biol Proced Online ; 25(1): 26, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730545

RESUMO

BACKGROUND: Astrocytes have recently gained attention as key contributors to the pathogenesis of neurodegenerative disorders including Parkinson's disease. To investigate human astrocytes in vitro, numerous differentiation protocols have been developed. However, the properties of the resulting glia are inconsistent, which complicates the selection of an appropriate method for a given research question. Thus, we compared two approaches for the generation of iPSC-derived astrocytes. We phenotyped glia that were obtained employing a widely used long, serum-free ("LSF") method against an in-house established short, serum-containing ("SSC") protocol which allows for the generation of astrocytes and midbrain neurons from the same precursor cells. RESULTS: We employed high-content confocal imaging and RNA sequencing to characterize the cultures. The astrocytes generated with the LSF or SSC protocols differed considerably in their properties: while the former cells were more labor-intense in their generation (5 vs 2 months), they were also more mature. This notion was strengthened by data resulting from cell type deconvolution analysis that was applied to bulk transcriptomes from the cultures to assess their similarity with human postmortem astrocytes. CONCLUSIONS: Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol, when designing functional or drug discovery studies involving iPSC-derived astrocytes.

10.
J Vis Exp ; (197)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37578222

RESUMO

The human body is colonized by at least the same number of microbial cells as it is composed of human cells, and most of these microorganisms are located in the gut. Though the interplay between the gut microbiome and the host has been extensively studied, how the gut microbiome interacts with the enteric nervous system remains largely unknown. To date, a physiologically representative in vitro model to study gut microbiome-nervous system interactions does not exist. To fill this gap, we further developed the human-microbial crosstalk (HuMiX) gut-on-chip model by introducing induced pluripotent stem cell-derived enteric neurons into the device. The resulting model, 'neuroHuMiX', allows for the co-culture of bacterial, epithelial, and neuronal cells across microfluidic channels, separated by semi-permeable membranes. Despite separation of the different cell types, the cells can communicate with each other through soluble factors, simultaneously providing an opportunity to study each cell type separately. This setup allows for first insights into how the gut microbiome affects the enteric neuronal cells. This is a critical first step in studying and understanding the human gut microbiome-nervous system axis.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Microbiota , Humanos , Sistema Nervoso Entérico/fisiologia , Neurônios , Dispositivos Lab-On-A-Chip
11.
Stem Cell Res ; 71: 103145, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364399

RESUMO

Fibroblasts from two Parkinson's disease (PD) patients carrying either the heterozygous mutation c.815G > A (Miro1 p.R272Q) or c.1348C > T (Miro1 p.R450C) in the RHOT1 gene, were converted into induced pluripotent stem cells (iPSCs) using RNA-based and episomal reprogramming, respectively. The corresponding isogenic gene-corrected lines have been generated using CRISPR/Cas9 technology. These two isogenic pairs will be used to study Miro1-related molecular mechanisms underlying neurodegeneration in relevant iPSC-derived neuronal models (e.g., midbrain dopaminergic neurons and astrocytes).


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Fibroblastos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Mitocondriais/genética
12.
Stem Cell Res ; 69: 103085, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003181

RESUMO

Primary skin fibroblasts from two Parkinson's disease (PD) patients carrying distinct heterozygous mutations in the RHOT1 gene encoding Miro1, namely c.1290A > G (Miro1 p.T351A) and c.2067A > G (Miro1 p.T610A), were converted into induced pluripotent stem cells (iPSCs) by episomal reprogramming. The corresponding isogenic gene-corrected lines have been generated using CRISPR/Cas9 technology. Here, we provide a comprehensive characterization and quality assurance of both isogenic pairs, which will be used to study Miro1-related molecular mechanisms underlying neurodegeneration in iPSC-derived neuronal models (e.g., midbrain dopaminergic neurons and astrocytes).


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Fibroblastos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Mitocondriais/genética
13.
Front Artif Intell ; 6: 1116870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925616

RESUMO

The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.

14.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766845

RESUMO

Nanoparticles (NPs) are the focus of research efforts that aim to develop successful drug delivery systems for the brain. Polypeptide nanocarriers are versatile platforms and combine high functionality with good biocompatibility and biodegradability. The key to the efficient brain delivery of NPs is the specific targeting of cerebral endothelial cells that form the blood-brain barrier (BBB). We have previously discovered that the combination of two different ligands of BBB nutrient transporters, alanine and glutathione, increases the permeability of vesicular NPs across the BBB. Our aim here was to investigate whether the combination of these molecules can also promote the efficient transfer of 3-armed poly(l-glutamic acid) NPs across a human endothelial cell and brain pericyte BBB co-culture model. Alanine and glutathione dual-targeted polypeptide NPs showed good cytocompatibility and elevated cellular uptake in a time-dependent and active manner. Targeted NPs had a higher permeability across the BBB model and could subsequently enter midbrain-like organoids derived from healthy and Parkinson's disease patient-specific stem cells. These results indicate that poly(l-glutamic acid) NPs can be used as nanocarriers for nervous system application and that the right combination of molecules that target cerebral endothelial cells, in this case alanine and glutathione, can facilitate drug delivery to the brain.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Alanina , Ácido Glutâmico , Encéfalo , Peptídeos/farmacologia , Peptídeos/química , Glutationa , Organoides
15.
Sci Rep ; 12(1): 11465, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794231

RESUMO

The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality of the results relies on the accuracy of the image analysis. Although state-of-the-art solutions for image segmentation employ deep learning approaches, the high cost of manually generating ground truth labels for model training hampers the day-to-day application in experimental laboratories. Alternatively, traditional computer vision-based solutions do not need expensive labels for their implementation. Our work combines both approaches by training a deep learning network using weak training labels automatically generated with conventional computer vision methods. Our network surpasses the conventional segmentation quality by generalising beyond noisy labels, providing a 25% increase of mean intersection over union, and simultaneously reducing the development and inference times. Our solution was embedded into an easy-to-use graphical user interface that allows researchers to assess the predictions and correct potential inaccuracies with minimal human input. To demonstrate the feasibility of training a deep learning solution on a large dataset of noisy labels automatically generated by a conventional pipeline, we compared our solution against the common approach of training a model from a small manually curated dataset by several experts. Our work suggests that humans perform better in context interpretation, such as error assessment, while computers outperform in pixel-by-pixel fine segmentation. Such pipelines are illustrated with a case study on image segmentation for autophagy events. This work aims for better translation of new technologies to real-world settings in microscopy-image analysis.


Assuntos
Aprendizado Profundo , Ensaios de Triagem em Larga Escala , Autofagia , Humanos , Processamento de Imagem Assistida por Computador , Fluxo de Trabalho
16.
Nat Metab ; 4(5): 589-607, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35618940

RESUMO

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Assuntos
Oxirredutases , Doença de Parkinson , Proteína Desglicase DJ-1 , Piruvatos , Linfócitos T Reguladores , Envelhecimento , Animais , Homeostase , Camundongos , Oxirredutases/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , Piruvatos/metabolismo , Linfócitos T Reguladores/metabolismo
17.
Stem Cell Res ; 62: 102815, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617842

RESUMO

We describe the generation of an isogenic control cell line DJ-1-delP GC13 from an induced pluripotent stem cell (iPSC) line DJ-1-delP LCSBi008-A that was derived from fibroblasts obtained from a Parkinson's disease (PD) patient. Using CRISPR/Cas9 technology, we corrected the disease causing c.471_473delGCC homozygous mutation in the PARK7 gene leading to p.158P deletion in the encoded protein DJ-1. The generated isogenic pair will be used for phenotypic analysis of PD-patient derived neurons and astrocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Astrócitos/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
18.
ALTEX ; 39(4): 694-709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35404466

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative condition with a multifactorial origin. To date, approaches to drug discovery for PD have resulted in symptomatic therapies for the motor manifestations and signs associated with neurodegeneration but have failed to identify preventive or curative therapies. This failure mainly originates from the persistence of major gaps in our understanding of the specific molecular basis of PD initiation and progression. New approach methodologies (NAMs) hold the potential to advance PD research while facilitating a move away from ani-mal-based research. We report a workshop involving NAM experts in the field of PD and neurodegenerative diseases, who discussed and identified a scientific strategy for successful, human-specific PD research. We outline some of the most important human-specific NAMs, along with their main potentials and limitations, and suggest possible ways to overcome the latter. Key recommendations to advance PD research include integrating NAMs while accounting for multiple levels of complexity, from molecular to population level; learning from recent advances in Alzheimer's disease research; increasing the sharing of data; promoting innovative pilot studies on disease pathogenesis; and accessing philanthropic funding to enable studies using novel approaches. Collaborative efforts between different stakeholders, including researchers, clinicians, and funding agencies, are urgently needed to create a scientific roadmap and support a paradigm change towards effective, human-specific research for neurodegenerative diseases without animals, as is already happening in the field of toxicology.


Assuntos
Doença de Parkinson , Animais , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Descoberta de Drogas
19.
Glia ; 70(7): 1267-1288, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35262217

RESUMO

The human brain is a complex, three-dimensional structure. To better recapitulate brain complexity, recent efforts have focused on the development of human-specific midbrain organoids. Human iPSC-derived midbrain organoids consist of differentiated and functional neurons, which contain active synapses, as well as astrocytes and oligodendrocytes. However, the absence of microglia, with their ability to remodel neuronal networks and phagocytose apoptotic cells and debris, represents a major disadvantage for the current midbrain organoid systems. Additionally, neuroinflammation-related disease modeling is not possible in the absence of microglia. So far, no studies about the effects of human iPSC-derived microglia on midbrain organoid neural cells have been published. Here we describe an approach to derive microglia from human iPSCs and integrate them into iPSC-derived midbrain organoids. Using single nuclear RNA Sequencing, we provide a detailed characterization of microglia in midbrain organoids as well as the influence of their presence on the other cells of the organoids. Furthermore, we describe the effects that microglia have on cell death and oxidative stress-related gene expression. Finally, we show that microglia in midbrain organoids affect synaptic remodeling and increase neuronal excitability. Altogether, we show a more suitable system to further investigate brain development, as well as neurodegenerative diseases and neuroinflammation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesencéfalo , Microglia/metabolismo , Neurogênese/genética , Organoides/metabolismo
20.
Mol Neurobiol ; 59(4): 2129-2149, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35044626

RESUMO

We have previously shown that the heteromer composed by the dopamine D3 receptor (D3R) and the nicotinic acetylcholine receptor (nAChR) (D3R-nAChR heteromer) is expressed in dopaminergic neurons, activated by nicotine and represents the molecular unit that, in these neurons, contributes to the modulation of critical events such as structural plasticity and neuroprotection. We now extended this study by investigating the D3R-nAChR heteromer properties using various cell models such as transfected HEK293 cells, primary cultures of mouse dopaminergic neurons and human dopaminergic neurons derived from induced pluripotent stem cells.We found that the D3R-nAChR heteromer is the molecular effector that transduces the remodeling properties not only associated with nicotine but also with D3R agonist stimulation: neither nAChR nor D3R, in fact, when express as monomers, are able to elicit these effects. Moreover, strong and sustained activation of the PI3K-ERK1/2/Akt pathways is coupled with D3R-nAChR heteromer stimulation, leading to the expression of the immediate-early gene c-Fos and to sustained phosphorylation of cytosolic p70 ribosomal S6 kinase (p70S6K), critical for dendritic remodeling. By contrast, while D3R stimulation results in rapid and transient activation of both Erk1/2 and Akt, that is PI3K-dependent, stimulation of nAChR is associated with persistent activation of Erk1/2 and Akt, in a PI3K-independent way. Thus, the D3R-nAChR heteromer and its ability to trigger the PI3K-ERK1/2/Akt signaling pathways may represent a novel target for preserving dopaminergic neurons healthy and for conferring neuronal protection against injuries.


Assuntos
Receptores de Dopamina D3 , Receptores Nicotínicos , Animais , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Nicotina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA