Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 15(5): e0069024, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717196

RESUMO

Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE: Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.


Assuntos
Citocromos , Compostos Férricos , Geobacter , Oxirredução , Transporte de Elétrons , Geobacter/genética , Geobacter/metabolismo , Citocromos/metabolismo , Citocromos/genética , Compostos Férricos/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo
2.
Microbiol Spectr ; : e0094123, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650614

RESUMO

Direct interspecies electron transfer (DIET) is important in anaerobic communities of environmental and practical significance. Other than the need for close physical contact for electrical connections, the interactions of DIET partners are poorly understood. Type VI secretion systems (T6SSs) typically kill competitive microbes. Surprisingly, Geobacter metallireducens highly expressed T6SS genes when DIET-based co-cultures were initiated with Geobacter sulfurreducens. T6SS gene expression was lower when the electron shuttle anthraquinone-2,6-disulfonate was added to alleviate the need for interspecies contact. Disruption of hcp, the G. metallireducens gene for the main T6SS needle-tube protein subunit, and the most highly upregulated gene in DIET-grown cells eliminated the long lag periods required for the initiation of DIET. The mutation did not aid DIET in the presence of granular-activated carbon (GAC), consistent with the fact that DIET partners do not make physical contact when electrically connected through conductive materials. The hcp-deficient mutant also established DIET quicker with Methanosarcina barkeri. However, the mutant also reduced Fe(III) oxide faster than the wild-type strain, a phenotype not expected from the loss of the T6SS. Quantitative PCR revealed greater gene transcript abundance for key components of extracellular electron transfer in the hcp-deficient mutant versus the wild-type strain, potentially accounting for the faster Fe(III) oxide reduction and impact on DIET. The results highlight that interspecies interactions beyond electrical connections may influence DIET effectiveness. The unexpected increase in the expression of genes for extracellular electron transport components when hcp was deleted emphasizes the complexities in evaluating the electromicrobiology of highly adaptable Geobacter species. IMPORTANCE Direct interspecies electron transfer is an alternative to the much more intensively studied process of interspecies H2 transfer as a mechanism for microbes to share electrons during the cooperative metabolism of energy sources. DIET is an important process in anaerobic soils and sediments generating methane, a significant greenhouse gas. Facilitating DIET can accelerate and stabilize the conversion of organic wastes to methane biofuel in anaerobic digesters. Therefore, a better understanding of the factors controlling how fast DIET partnerships are established is expected to lead to new strategies for promoting this bioenergy process. The finding that when co-cultured with G. sulfurreducens, G. metallireducens initially expressed a type VI secretion system, a behavior not conducive to interspecies cooperation, illustrates the complexity of establishing syntrophic relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA