RESUMO
Z-DNA binding protein 1 (ZBP1) has important functions in anti-viral immunity and in the regulation of inflammatory responses. ZBP1 induces necroptosis by directly engaging and activating RIPK3, however, the mechanisms by which ZBP1 induces inflammation and in particular the role of RIPK1 and the contribution of cell death-independent signaling remain elusive. Here we show that ZBP1 causes skin inflammation by inducing RIPK3-mediated necroptosis and RIPK1-caspase-8-mediated apoptosis in keratinocytes. ZBP1 induced TNFR1-independent skin inflammation in mice with epidermis-specific ablation of FADD by triggering keratinocyte necroptosis. Moreover, transgenic expression of C-terminally truncated constitutively active ZBP1 (ZBP1ca) in mouse epidermis caused skin inflammation that was only partially inhibited by abrogation of RIPK3-MLKL-dependent necroptosis and fully prevented by combined deficiency in MLKL and caspase-8. Importantly, ZBP1ca induced caspase-8-mediated skin inflammation by RHIM-dependent but kinase activity-independent RIPK1 signaling. Furthermore, ZBP1ca-induced inflammatory cytokine production in the skin was completely prevented by combined inhibition of apoptosis and necroptosis arguing against a cell death-independent pro-inflammatory function of ZBP1. Collectively, these results showed that ZBP1 induces inflammation by activating necroptosis and RIPK1 kinase activity-independent apoptosis.
Assuntos
Apoptose , Caspase 8 , Inflamação , Queratinócitos , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos , Caspase 8/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Queratinócitos/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Transdução de Sinais , Humanos , Proteínas Quinases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
TBK1 and IKKε regulate multiple cellular processes including anti-viral type-I interferon responses, metabolism and TNF receptor signaling. However, the relative contributions and potentially redundant functions of IKKε and TBK1 in cell death, inflammation and tissue homeostasis remain poorly understood. Here we show that IKKε compensates for the loss of TBK1 kinase activity to prevent RIPK1-dependent and -independent inflammation in mice. Combined inhibition of IKKε and TBK1 kinase activities caused embryonic lethality that was rescued by heterozygous expression of kinase-inactive RIPK1. Adult mice expressing kinase-inactive versions of IKKε and TBK1 developed systemic inflammation that was induced by both RIPK1-dependent and -independent mechanisms. Combined inhibition of IKKε and TBK1 kinase activities in myeloid cells induced RIPK1-dependent cell death and systemic inflammation mediated by IL-1 family cytokines. Tissue-specific studies showed that IKKε and TBK1 were required to prevent cell death and inflammation in the intestine but were dispensable for liver and skin homeostasis. Together, these findings revealed that IKKε and TBK1 exhibit tissue-specific functions that are important to prevent cell death and inflammation and maintain tissue homeostasis.
Assuntos
Quinase I-kappa B , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Citocinas/metabolismo , InflamaçãoRESUMO
Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.
Assuntos
Gorduras na Dieta , Enterócitos , Metabolismo dos Lipídeos , Mitocôndrias , Animais , Camundongos , Aspartato-tRNA Ligase/metabolismo , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Intestinos , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologiaRESUMO
Pathways controlling intestinal epithelial cell (IEC) death regulate gut immune homeostasis and contribute to the pathogenesis of inflammatory bowel diseases. Here, we show that caspase-8 and its adapter FADD act in IECs to regulate intestinal inflammation downstream of Z-DNA binding protein 1 (ZBP1)- and tumor necrosis factor receptor-1 (TNFR1)-mediated receptor interacting protein kinase 1 (RIPK1) and RIPK3 signaling. Mice with IEC-specific FADD or caspase-8 deficiency developed colitis dependent on mixed lineage kinase-like (MLKL)-mediated epithelial cell necroptosis. However, MLKL deficiency fully prevented ileitis caused by epithelial caspase-8 ablation, but only partially ameliorated ileitis in mice lacking FADD in IECs. Our genetic studies revealed that caspase-8 and gasdermin-D (GSDMD) were both required for the development of MLKL-independent ileitis in mice with epithelial FADD deficiency. Therefore, FADD prevents intestinal inflammation downstream of ZBP1 and TNFR1 by inhibiting both MLKL-induced necroptosis and caspase-8-GSDMD-dependent pyroptosis-like death of epithelial cells.
Assuntos
Caspase 8/genética , Proteína de Domínio de Morte Associada a Fas/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Quinases/metabolismo , Animais , Apoptose/genética , Caspase 8/metabolismo , Morte Celular/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Perfilação da Expressão Gênica , Homeostase/genética , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas Quinases/genéticaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
The biological function of Z-DNA and Z-RNA, nucleic acid structures with a left-handed double helix, is poorly understood1-3. Z-DNA-binding protein 1 (ZBP1; also known as DAI or DLM-1) is a nucleic acid sensor that contains two Zα domains that bind Z-DNA4,5 and Z-RNA6-8. ZBP1 mediates host defence against some viruses6,7,9-14 by sensing viral nucleic acids6,7,10. RIPK1 deficiency, or mutation of its RIP homotypic interaction motif (RHIM), triggers ZBP1-dependent necroptosis and inflammation in mice15,16. However, the mechanisms that induce ZBP1 activation in the absence of viral infection remain unknown. Here we show that Zα-dependent sensing of endogenous ligands induces ZBP1-mediated perinatal lethality in mice expressing RIPK1 with mutated RHIM (Ripk1mR/mR), skin inflammation in mice with epidermis-specific RIPK1 deficiency (RIPK1E-KO) and colitis in mice with intestinal epithelial-specific FADD deficiency (FADDIEC-KO). Consistently, functional Zα domains were required for ZBP1-induced necroptosis in fibroblasts that were treated with caspase inhibitors or express RIPK1 with mutated RHIM. Inhibition of nuclear export triggered the Zα-dependent activation of RIPK3 in the nucleus resulting in cell death, which suggests that ZBP1 may recognize nuclear Z-form nucleic acids. We found that ZBP1 constitutively bound cellular double-stranded RNA in a Zα-dependent manner. Complementary reads derived from endogenous retroelements were detected in epidermal RNA, which suggests that double-stranded RNA derived from these retroelements may act as a Zα-domain ligand that triggers the activation of ZBP1. Collectively, our results provide evidence that the sensing of endogenous Z-form nucleic acids by ZBP1 triggers RIPK3-dependent necroptosis and inflammation, which could underlie the development of chronic inflammatory conditions-particularly in individuals with mutations in RIPK1 and CASP817-20.
Assuntos
Inflamação/metabolismo , Necroptose , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Caspase 8/metabolismo , Feminino , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Nucleicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Dermatopatias/genética , Dermatopatias/metabolismo , Dermatopatias/patologiaRESUMO
Receptor interacting protein kinase 1 (RIPK1) regulates cell death and inflammatory responses downstream of TNFR1 and other receptors, and has been implicated in the pathogenesis of inflammatory and degenerative diseases. RIPK1 kinase activity induces apoptosis and necroptosis, however the mechanisms and phosphorylation events regulating RIPK1-dependent cell death signaling remain poorly understood. Here we show that RIPK1 autophosphorylation at serine 166 plays a critical role for the activation of RIPK1 kinase-dependent apoptosis and necroptosis. Moreover, we show that S166 phosphorylation is required for RIPK1 kinase-dependent pathogenesis of inflammatory pathologies in vivo in four relevant mouse models. Mechanistically, we provide evidence that trans autophosphorylation at S166 modulates RIPK1 kinase activation but is not by itself sufficient to induce cell death. These results show that S166 autophosphorylation licenses RIPK1 kinase activity to induce downstream cell death signaling and inflammation, suggesting that S166 phosphorylation can serve as a reliable biomarker for RIPK1 kinase-dependent pathologies.
Assuntos
Apoptose , Inflamação/metabolismo , Inflamação/patologia , Fosfosserina/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Alanina Transaminase/metabolismo , Animais , Células da Medula Óssea/citologia , Colite/patologia , Genótipo , Hepatite/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Neoplasias/patologia , Fosforilação , Sepse/patologia , Pele/patologia , Fator de Necrose Tumoral alfaRESUMO
Necroptosis and pyroptosis are inflammatory forms of regulated necrotic cell death as opposed to apoptosis that is generally considered immunologically silent. Recent studies revealed unexpected links in the pathways regulating and executing cell death in response to activation of signaling cascades inducing apoptosis, necroptosis, and pyroptosis. Emerging evidence suggests that receptor interacting protein kinase 1 and caspase-8 control the cross-talk between apoptosis, necroptosis, and pyroptosis and determine the type of cell death induced in response to activation of cell death signaling.
Assuntos
Apoptose/genética , Caspase 8/fisiologia , Necroptose/genética , Piroptose/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Caspase 8/genética , Caspase 8/metabolismo , Humanos , Necrose/genética , Necrose/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/genéticaRESUMO
Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.
Assuntos
Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Fígado/metabolismo , Fator de Transcrição MafG/genética , Obesidade/genética , RNA Longo não Codificante/genética , Proteínas Repressoras/genética , Idoso , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Fator de Transcrição MafG/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Caspase-8 is the initiator caspase of extrinsic apoptosis1,2 and inhibits necroptosis mediated by RIPK3 and MLKL. Accordingly, caspase-8 deficiency in mice causes embryonic lethality3, which can be rescued by deletion of either Ripk3 or Mlkl4-6. Here we show that the expression of enzymatically inactive CASP8(C362S) causes embryonic lethality in mice by inducing necroptosis and pyroptosis. Similar to Casp8-/- mice3,7, Casp8C362S/C362S mouse embryos died after endothelial cell necroptosis leading to cardiovascular defects. MLKL deficiency rescued the cardiovascular phenotype but unexpectedly caused perinatal lethality in Casp8C362S/C362S mice, indicating that CASP8(C362S) causes necroptosis-independent death at later stages of embryonic development. Specific loss of the catalytic activity of caspase-8 in intestinal epithelial cells induced intestinal inflammation similar to intestinal epithelial cell-specific Casp8 knockout mice8. Inhibition of necroptosis by additional deletion of Mlkl severely aggravated intestinal inflammation and caused premature lethality in Mlkl knockout mice with specific loss of caspase-8 catalytic activity in intestinal epithelial cells. Expression of CASP8(C362S) triggered the formation of ASC specks, activation of caspase-1 and secretion of IL-1ß. Both embryonic lethality and premature death were completely rescued in Casp8C362S/C362SMlkl-/-Asc-/- or Casp8C362S/C362SMlkl-/-Casp1-/- mice, indicating that the activation of the inflammasome promotes CASP8(C362S)-mediated tissue pathology when necroptosis is blocked. Therefore, caspase-8 represents the molecular switch that controls apoptosis, necroptosis and pyroptosis, and prevents tissue damage during embryonic development and adulthood.
Assuntos
Apoptose/genética , Caspase 8/genética , Caspase 8/metabolismo , Necroptose/genética , Piroptose/genética , Animais , Linhagem Celular , Células Cultivadas , Ativação Enzimática/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Inflamassomos/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/enzimologia , Queratinócitos/citologia , Queratinócitos/patologia , Camundongos , Mutação , Receptor TIE-2/genética , Receptor TIE-2/metabolismoRESUMO
Reprogramming of mitochondria provides cells with the metabolic flexibility required to adapt to various developmental transitions such as stem cell activation or immune cell reprogramming, and to respond to environmental challenges such as those encountered under hypoxic conditions or during tumorigenesis1-3. Here we show that the i-AAA protease YME1L rewires the proteome of pre-existing mitochondria in response to hypoxia or nutrient starvation. Inhibition of mTORC1 induces a lipid signalling cascade via the phosphatidic acid phosphatase LIPIN1, which decreases phosphatidylethanolamine levels in mitochondrial membranes and promotes proteolysis. YME1L degrades mitochondrial protein translocases, lipid transfer proteins and metabolic enzymes to acutely limit mitochondrial biogenesis and support cell growth. YME1L-mediated mitochondrial reshaping supports the growth of pancreatic ductal adenocarcinoma (PDAC) cells as spheroids or xenografts. Similar changes to the mitochondrial proteome occur in the tumour tissues of patients with PDAC, suggesting that YME1L is relevant to the pathophysiology of these tumours. Our results identify the mTORC1-LIPIN1-YME1L axis as a post-translational regulator of mitochondrial proteostasis at the interface between metabolism and mitochondrial dynamics.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Metabolismo dos Lipídeos , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Hipóxia Celular , Linhagem Celular , Proliferação de Células , Humanos , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metaloendopeptidases/genética , Proteínas Mitocondriais/genética , ProteóliseRESUMO
Epithelial barrier defects are implicated in the pathogenesis of inflammatory bowel disease (IBD); however, the role of microbiome dysbiosis and the cytokine networks orchestrating chronic intestinal inflammation in response to barrier impairment remain poorly understood. Here, we showed that altered Schaedler flora (ASF), a benign minimal microbiota, was sufficient to trigger colitis in a mouse model of intestinal barrier impairment. Colitis development required myeloid-cell-specific adaptor protein MyD88 signaling and was orchestrated by the cytokines IL-12, IL-23, and IFN-γ. Colon inflammation was driven by IL-12 during the early stages of the disease, but as the mice aged, the pathology shifted toward an IL-23-dependent inflammatory response driving disease chronicity. These findings reveal that IL-12 and IL-23 act in a temporally distinct, biphasic manner to induce microbiota-driven chronic intestinal inflammation. Similar mechanisms might contribute to the pathogenesis of IBD particularly in patients with underlying intestinal barrier defects.
Assuntos
Colite/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Mucosa Intestinal/patologia , Microbiota/imunologia , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Inflamação , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-23/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Quimeras de TransplanteRESUMO
A coding variant of the inflammatory bowel disease (IBD) risk gene ATG16L1 has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING-dependent type I interferon (IFN-I) signaling, which is augmented in Atg16l1 ΔIEC intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo, IL-22 treatment in Atg16l1 ΔIEC and Atg16l1 ΔIEC/Xbp1 ΔIEC mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22-induced ileal inflammation in Atg16l1 ΔIEC mice. Our data demonstrate an unexpected role of ATG16L1 in coordinating the outcome of IL-22 signaling in the intestinal epithelium.
Assuntos
Proteínas Relacionadas à Autofagia/imunologia , Proteínas de Transporte/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Transdução de Sinais/imunologia , Animais , Proteínas Relacionadas à Autofagia/genética , Células CACO-2 , Proteínas de Transporte/genética , Variação Genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interleucinas/genética , Mucosa Intestinal/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Nucleotidiltransferases/genética , Transdução de Sinais/genética , Interleucina 22RESUMO
Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD.