Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 25(20): 5341-5354, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28797771

RESUMO

Novel biphenyloxy-alkyl derivatives of piperidine and azepane were synthesized and evaluated for their binding properties at the human histamine H3 receptor. Two series of compounds were obtained with a meta- and a para-biphenyl moiety. The alkyl chain spacer contained five and six carbon atoms. The highest affinity among all compounds was shown by 1-(6-(3-phenylphenoxy)hexyl)azepane (13) with a Ki value of 18nM. Two para-biphenyl derivatives, 1-(5-(4-phenylphenoxy)pentyl)piperidine (14; Ki=25nM) and 1-(5-(4-phenylphenoxy)pentyl)azepane (16; Ki=34nM), classified as antagonists in a cAMP accumulation assay (IC50=4 and 9nM, respectively), were studied in detail. Compounds 14 and 16 blocked RAMH-induced dipsogenia in rats (ED50 of 2.72mg/kg and 1.75mg/kg respectively), and showed high selectivity (hH4R vs hH3R>600-fold) and low toxicity (hERG inhibition: IC50>1.70µM; hepatotoxicity IC50>12.5µM; non-mutagenic up to 10µM). Furthermore, the metabolic stability was evaluated in vitro on human liver microsomes (HLMs) and/or rat liver microsomes (RLMs). Metabolites produced were analyzed and tentatively identified by UPLC-MS techniques. The results demonstrated easy hydroxylation of the biphenyl ring.


Assuntos
Azepinas/farmacologia , Piperidinas/farmacologia , Receptores Histamínicos H3/metabolismo , Animais , Azepinas/síntese química , Azepinas/química , Proliferação de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Células Hep G2 , Humanos , Ligantes , Masculino , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Ratos , Ratos Wistar , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/metabolismo , Receptores Histamínicos H1/metabolismo , Relação Estrutura-Atividade
2.
Eur J Med Chem ; 83: 534-46, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24996140

RESUMO

A series of novel 2-amino-4-(4-methylpiperazin-1-yl)-1,3,5-triazine derivatives with different aryl substituents in the 6-position was designed, synthesized and evaluated for histamine H4 receptor (H4R) affinity in Sf9 cells expressing human H4R co-expressed with G-protein subunits. Triazine derivative 8 with a 6-(p-chlorophenyl) substituent showed the highest affinity with hH4R Ki value of 203 nM and was classified as an antagonist in cAMP accumulation assay. This compound, identified as a new lead structure, demonstrated also anti-inflammatory properties in preliminary studies in mice (carrageenan-induced edema test) and neither possessed significant antiproliferative activity, nor modulated CYP3A4 activity up to concentration of 25 µM. In order to discuss structure-activity relationships molecular modeling and docking studies were undertaken.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Triazinas/metabolismo , Triazinas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estabilidade de Medicamentos , Edema/tratamento farmacológico , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H4 , Especificidade por Substrato , Triazinas/química , Triazinas/uso terapêutico
3.
Bioorg Med Chem Lett ; 24(10): 2236-9, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24745967

RESUMO

Several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. Nevertheless, many promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity and their dibasic character. Analysis of previously, as potential PET ligands synthesized compounds (ST-889, ST-928) revealed promising results concerning physicochemical properties and drug-likeness. Herein, the synthesis, the evaluation of the binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties of further novel benzylpiperidine variations on H3R antagonists is described. Due to the introduction of various small hydrophilic moieties in the structure, drug-likeness parameters have been improved. For instance, compound 12 (ST-1032) showed in addition to high affinity at the H3R (pKi (hH3R)=9.3) clogS, clogP, LE, LipE, and LELP values of -2.48, 2.18, 0.44, 7.14, and 4.95, respectively. Also, the keto derivative 5 (ST-1703, pKi (hH3R)=8.6) revealed LipE and LELP values of 5.25 and 6.84, respectively.


Assuntos
Antagonistas dos Receptores Histamínicos/química , Antagonistas dos Receptores Histamínicos/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Receptores Histamínicos H3/metabolismo , Antagonistas dos Receptores Histamínicos/síntese química , Humanos , Cinética , Ligantes , Piperidinas/síntese química , Ligação Proteica , Receptores Histamínicos H3/química
4.
Bioorg Med Chem Lett ; 23(1): 132-7, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23218604

RESUMO

Starting from a known H(4)R ligand based on a pyrimidine skeleton, a series of novel analogues based on a pyrrolo[2,3-d]pyrimidine scaffold have been prepared. Whereas the original pyrimidine congener shows good affinity at hH(4)R (K(i)=0.5 µM), its lacks selectivity with a K(i) value for the hH(3)R of 1 µM. Within the newly synthesized pyrrolo[2,3-d]pyrimidines, several congeners show K(i) values of less than 1 µM at the hH(4)R and show a much improved selectivity profile. Therefore, these series represent an interesting starting point for the discovery of novel hH(4)R ligands.


Assuntos
Ligantes , Pirimidinas/química , Pirróis/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Humanos , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirróis/síntese química , Pirróis/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Receptores Histamínicos H4 , Relação Estrutura-Atividade
5.
ACS Med Chem Lett ; 4(2): 269-73, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24900647

RESUMO

A piperidine-based lead structure for the human histamine H3 receptor (hH3R) was coupled with the BODIPY fluorophore and resulted in a strong green fluorescent (quantum yield, 0.92) hH3R ligand with affinity in the nanomolar concentration range (K i hH3R = 6.51 ± 3.31 nM), named Bodilisant. Screening for affinities at histamine and dopamine receptor subtypes showed high hH3R preference. Bodilisant was used for visualization of hH3R in hH3R overexpressing HEK-293 cells with fluorescence confocal laser scanning microscopy. In addition, in native human brain tissues, Bodilisant showed clear and displaceable images of labeled hH3R.

6.
Front Syst Neurosci ; 6: 14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470321

RESUMO

Novel fluorescent chalcone-based ligands at human histamine H(3) receptors (hH(3)R) have been designed, synthesized, and characterized. Compounds described are non-imidazole analogs of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH(3)R in the same concentration range like the reference antagonist ciproxifan (hH(3)R pK(i) value of 7.2). Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be used to visualize hH(3)R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH(3)R visualization in different tissues.

7.
ACS Med Chem Lett ; 3(9): 774-9, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900547

RESUMO

Exchange of the lipophilc part of ortho-substituted cinnamic acid lead structures with different small molecule fluorophoric moieties via a dimethylene spacer resulted in hEP3R ligands with affinities in the nanomolar concentration range. Synthesized compounds emit fluorescence in the blue, green, and red range of light and have been tested concerning their potential as a pharmacological tool. hEP3Rs were visualized by confocal laser scanning microscopy on HT-29 cells, on murine kidney tissues, and on human brain tissues and functionally were characterized as antagonists on human platelets. Inhibition of PGE2 and collagen-induced platelet aggregation was measured after preincubation with novel hEP3R ligands. The pyryllium-labeled ligand 8 has been shown as one of the most promising structures, displaying a useful fluorescence and highly affine hEP3R antagonists.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA