Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270101

RESUMO

The characterization of plant genetic resources is a precondition for genetic improvement and germplasm management. The increasing use of molecular markers for DNA-based genotype signature is crucial for variety identification and traceability in the food supply chain. We collected 75 Sicilian hazelnut accessions from private and public field collections, including widely grown varieties from the Nebrodi Mountains in north east Sicily (Italy). The germplasm was fingerprinted through nine standardized microsatellites (SSR) for hazelnut identification to evaluate the genetic diversity of the collected accessions, validating SSR discrimination power. We identified cases of homonymy and synonymy among acquisitions and the unique profiles. The genetic relationships illustrated by hierarchical clustering, structure, and discriminant analyses revealed a clear distinction between local and commercial varieties. The comparative genetic analysis also showed that the Nebrodi genotypes are significantly different from the Northern Italian, Iberian, and Turkish genotypes. These results highlight the need and urgency to preserve Nebrodi germplasm as a useful and valuable source for traits of interest employable for breeding. Our study demonstrates the usefulness of molecular marker analysis to select a reference germplasm collection of Sicilian hazelnut varieties and to implement certified plants' production in the supply chain.

2.
Plants (Basel) ; 9(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759817

RESUMO

The historical cultivation of common bean (Phaseolus vulgaris L.) has resulted in the development of local populations/cultivars in restricted Italian rural areas. Many common bean landraces, still cultivated in small mountain areas from Sicily, have become outdated and endangered due to the commercial varieties spreading. These accessions are poorly known but often represent a genetic heritage to be preserved and enhanced. The ex situ conservation of fifty-seven Sicilian common bean landraces was carried out at the "Living Plants Germplasm Bank" at Ucria (Messina, Italy), founded by the Nebrodi Regional Park, together with the "Sicilian Plant Germplasm Repository" of University of Palermo (SPGR/PA). To assess the germplasm genetic diversity, nineteen morphological traits and eight Simple Sequence Repeats (SSRs) were used. Genetic distances among landraces were calculated to construct a clustering tree by using unweighted pair group method arithmetic (UPGMA). Seed germplasm diversity of Sicilian common bean varied from 80.7% to 93.3%, based on six seed descriptors and six leaf, flower, and pod descriptors, respectively, while cluster genetic analysis depicted a clear separation among all the 57 landraces. Principal coordinates (PCoA) and STRUCTURE analyses showed a prevalent rate of admixture between Mesoamerican and Andean gene pools in Sicilian common bean collection, confirming its heterogeneity. The observed high level of diversity evidenced the needs to adopt accurate criterion to plan a definitive ex situ germplasm collection to share agrobiodiversity with local farmers and to avoid any further loss of genetic resources in rural and protected areas.

3.
Environ Toxicol Chem ; 35(10): 2503-2510, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26918843

RESUMO

Halloysite nanotubes (HNTs) are natural nanomaterials that are biocompatible and available in large amounts at low prices. They are emerging nanomaterials with appealing properties for applications like support for metal nanoparticles (NPs). The potential environmental impacts of NPs can be understood in terms of phytotoxicity. Current research has been focusing on HNT applications in cell or animal models, while their use in plants is limited so their ecotoxicological impact is poorly documented. To date there are no studies on the phytotoxic effects of functionalized halloysites (functionalized-HNTs). To develop a quantitative risk assessment model for predicting the potential impact of HNT-supported palladium nanoparticles (HNT-PdNPs) on plant life, an investigation was undertaken to explore their effects on seed germination, seedling development, and mitotic division in root tip cells of 2 lots of Raphanus sativus L. with different vigor. The results showed that exposure to 1500 mg/L of HNTs, functionalized-HNTs, and HNT-PdNPs had no significant influence on germination, seedling development, xylem differentiation, or mitotic index in both lots. Cytogenetic analyses revealed that treatments with functionalized-HNT significantly increased the number of aberrations in low-vigor seeds. These results suggest that low-vigor seeds represent a model for a stress test that would be useful to monitor the effects of NPs. Moreover the present study offers scientific evidence for the use of halloysite for environmental purposes, supporting the biological safety of HNT-PdNPs. Environ Toxicol Chem 2016;35:2503-2510. © 2016 SETAC.


Assuntos
Silicatos de Alumínio/toxicidade , Nanopartículas Metálicas/toxicidade , Nanotubos/toxicidade , Paládio/toxicidade , Raphanus/efeitos dos fármacos , Animais , Argila , Germinação/efeitos dos fármacos , Raphanus/crescimento & desenvolvimento , Medição de Risco , Sementes/efeitos dos fármacos
4.
Chem Biodivers ; 11(4): 652-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24706632

RESUMO

The chemical composition of the essential oils isolated from the aerial parts of Anthemis pignattiorum Guarino, Raimondo & Domina and A. ismelia Lojac. and the aerial parts and flowers of Anthemis cupaniana Tod. ex Nyman, three endemic Sicilian species belonging to the section Hiorthia, was determined by GC-FID and GC/MS analyses. (Z)-Muurola-4(14),5-diene (27.3%) was recognized as the main constituent of the A. pignattiorum essential oil, together with isospathulenol (10.6%), sabinene (7.7%), and artemisyl acetate (6.8%), while in the oil obtained from the aerial parts of A. ismelia, geranyl propionate (8.8%), bornyl acetate (7.9%), ß-thujone (7.8%), neryl propionate (6.5%), and τ-muurolol (6.5%) prevailed. α-Pinene was the main compound of both the aerial part and flower oils of A. cupaniana (18.4 and 13.2%, resp.). Also noteworthy are the considerable amounts of artemisyl acetate (12.7%) and ß-thujone (11.8%) found in the oil from the aerial parts and those of tricosane (9.8%) and sabinene (7.6%) evidenced in the flower oil. Furthermore, an update on the main compounds identified in the essential oils of all the Anthemis taxa studied so far was presented, and cluster analyses were carried out, to compare the essential oils of these taxa.


Assuntos
Anthemis/química , Óleos Voláteis/análise , Óleos Voláteis/química , Monoterpenos Bicíclicos , Quimiotaxia , Análise por Conglomerados , Flores/química , Monoterpenos , Componentes Aéreos da Planta/química , Sesquiterpenos/análise , Sicília , Terpenos/análise
5.
Physiol Plant ; 114(1): 102-108, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11982940

RESUMO

Peroxidase (POD, EC 1.11.1.7) activity, cellular localization and isozyme patterns were investigated in the seed integument, cotyledon and embryo axis of Brassica oleracea cv. Cappuccio during pregermination and seedling growth. Seeds started to germinate after 24 h of imbibition. POD activity was localized in the pigmented layer of the integument and in procambial strands of the cotyledon and embryo axis in the first 24 h of imbibition. It was localized in the integumental cells of palisade, pigmented and aleurone layers and in epidermal, meristematic, procambial cells and xylem elements of the root and hypocotyl after 48 h of imbibition. POD activity increased during germination and early seedling growth: in the integument, it reached a maximum value after 72 h of imbibition, in the embryo axis and cotyledons, it increased up to 144 h of imbibition. The increase in peroxidase activity was accompanied by the appearance of new isozymes correlated with the development of seedling tissues. The isozyme profile was characterized by nine peroxidases: isoperoxidase of 50 kDa peculiar to integuments, that of 150 kDa to cotyledons and that of 82 kDa to the embryo axis. During pregerminative phase isozymes of 84 kDa were detected in the integument and cotyledons, of 48.5 kDa in the embryo axis. After germination, peroxidase activity and the complexity of the isozyme pattern increased, suggesting that they play a relevant role after rupture of the integument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA