Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS One ; 14(2): e0212076, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730997

RESUMO

While an ischemic insult poses a lethal danger to myocardial cells, a significant proportion of cardiac myocytes remain viable throughout the ischemic episode and die, paradoxically, only after the blood flow is reinstated. Despite decades of research, the actual chronology of critical events leading to cardiomyocyte death during the reperfusion phase remains poorly understood. Arguably, identification of the pivotal event in this setting is necessary to design effective strategies aimed at salvaging the myocardium after an ischemic attack. Here we used neonatal rat ventricular myocytes (NRVMs) subjected to 20-30 min of simulated ischemia followed by 1 hour of "reperfusion". Using different combinations of spectrally-compatible fluorescent indicators, we analyzed the relative timing of the following events: (1) abnormal increase in cytoplasmic [Ca2+] (TCaCy); (2) abnormal increase in mitochondrial [Ca2+] (TCaMi); (3) loss of mitochondrial inner membrane potential (ΔΨm) indicating mitochondrial permeability transitions (TMPT); (4) sacrolemmal permeabilization (SP) to the normally impermeable small fluorophore TO-PRO3 (TSP). In additional experiments we also analyzed the timing of abnormal uptake of Zn2+ into the cytoplasm (TZnCy) relative to TCaCy and TSP. We focused on those NRVMs which survived anoxia, as evidenced by at least 50% recovery of ΔΨm and the absence of detectable SP. In these cells, we found a consistent sequence of critical events in the order, from first to last, of TCaCy, TCaMi, TMPT, TSP. After detecting TCaCy and TCaMi, abrupt switches between 1.1 mM and nominally zero [Ca2+] in the perfusate quickly propagated to the cytoplasmic and mitochondrial [Ca2+]. Depletion of the sarcoplasmic reticulum with ryanodine (5 µM)/thapsigargin (1 µM) accelerated all events without changing their order. In the presence of ZnCl2 (10-30 µM) in the perfusate we found a consistent timing sequence TCaCy < TZn ≤ TSP. In some cells ZnCl2 interfered with Ca2+ uptake, causing "steps" or "gaps" in the [Ca2+]Cy curve, a phenomenon never observed in the absence of ZnCl2. Together, these findings suggest an evolving permeabilization of NRVM's sarcolemma during reoxygenation, in which the expansion of the pore size determines the timing of critical events, including TMPT.


Assuntos
Cálcio/metabolismo , Ventrículos do Coração/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Permeabilidade , Ratos , Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Zinco/metabolismo
2.
PLoS One ; 13(7): e0200301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975744

RESUMO

A prominent theory of cell death in myocardial ischemia/reperfusion (I/R) posits that the primary and pivotal step of irreversible cell injury is the opening of the mitochondrial permeability transition (MPT) pore. However, the predominantly positive evidence of protection against infarct afforded by the MPT inhibitor, Cyclosporine A (CsA), in experimental studies is in stark contrast with the overall lack of benefit found in clinical trials of CsA. One reason for the discrepancy might be the fact that relatively short experimental ischemic episodes (<1 hour) do not represent clinically-realistic durations, usually exceeding one hour. Here we tested the hypothesis that MPT is not the primary event of cell death after prolonged (60-80 min) episodes of global ischemia. We used confocal microcopy in Langendorff-perfused rabbit hearts treated with the electromechanical uncoupler, 2,3-Butanedione monoxime (BDM, 20 mM) to allow tracking of MPT and sarcolemmal permeabilization (SP) in individual ventricular myocytes. The time of the steepest drop in fluorescence of mitochondrial membrane potential (ΔΨm)-sensitive dye, TMRM, was used as the time of MPT (TMPT). The time of 20% uptake of the normally cell-impermeable dye, YO-PRO1, was used as the time of SP (TSP). We found that during reperfusion MPT and SP were tightly coupled, with MPT trending slightly ahead of SP (TSP-TMPT = 0.76±1.31 min; p = 0.07). These coupled MPT/SP events occurred in discrete myocytes without crossing cell boundaries. CsA (0.2 µM) did not reduce the infarct size, but separated SP and MPT events, such that detectable SP was significantly ahead of MPT (TSP -TMPT = -1.75±1.28 min, p = 0.006). Mild permeabilization of cells with digitonin (2.5-20 µM) caused coupled MPT/SP events which occurred in discrete myocytes similar to those observed in Control and CsA groups. In contrast, deliberate induction of MPT by titration with H2O2 (200-800 µM), caused propagating waves of MPT which crossed cell boundaries and were uncoupled from SP. Taken together, these findings suggest that after prolonged episodes of ischemia, SP is the primary step in myocyte death, of which MPT is an immediate and unavoidable consequence.


Assuntos
Cardiotônicos/farmacologia , Morte Celular , Permeabilidade da Membrana Celular/fisiologia , Ciclosporina/farmacologia , Isquemia Miocárdica/patologia , Sarcolema/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Feminino , Masculino , Microscopia Confocal , Traumatismo por Reperfusão Miocárdica/patologia , Coelhos , Sarcolema/efeitos dos fármacos
3.
Am J Physiol Heart Circ Physiol ; 312(4): H752-H767, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130334

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) regulates the principle ion channels mediating cardiac excitability and conduction, but how this regulation translates to the normal and ischemic heart remains unknown. Diverging results on CaMKII regulation of Na+ channels further prevent predicting how CaMKII activity regulates excitability and conduction in the intact heart. To address this deficiency, we tested the effects of the CaMKII blocker KN93 (1 and 2.75 µM) and its inactive analog KN92 (2.75 µM) on conduction and excitability in the left (LV) and right (RV) ventricles of rabbit hearts during normal perfusion and global ischemia. We used optical mapping to determine local conduction delays and the optical action potential (OAP) upstroke velocity (dV/dtmax). At baseline, local conduction delays were similar between RV and LV, whereas the OAP dV/dtmax was lower in RV than in LV. At 2.75 µM, KN93 heterogeneously slowed conduction and reduced dV/dtmax, with the largest effect in the RV outflow tract (RVOT). This effect was further exacerbated by ischemia, leading to recurrent conduction block in the RVOT and early ventricular fibrillation (at 6.7 ± 0.9 vs. 18.2 ± 0.8 min of ischemia in control, P < 0.0001). Neither KN92 nor 1 µM KN93 depressed OAP dV/dtmax or conduction. Rabbit cardiomyocytes isolated from RVOT exhibited a significantly lower dV/dtmax than those isolated from the LV. KN93 (2.75 µM) significantly reduced dV/dtmax in cells from both locations. This led to frequency-dependent intermittent activation failure occurring predominantly in RVOT cells. Thus CaMKII blockade exacerbates intrinsically lower excitability in the RVOT, which is proarrhythmic during ischemia.NEW & NOTEWORTHY We show that calcium/calmodulin-dependent protein kinase II (CaMKII) blockade exacerbates intrinsically lower excitability in the right ventricular outflow tract, which causes highly nonuniform chamber-specific slowing of conduction and facilitates ventricular fibrillation during ischemia. Constitutive CaMKII activity is necessary for uniform and safe ventricular conduction, and CaMKII block is potentially proarrhythmic.


Assuntos
Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Circulação Coronária/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Coração/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Sulfonamidas/farmacologia , Fibrilação Ventricular/fisiopatologia , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Feminino , Técnicas In Vitro , Masculino , Potenciais da Membrana , Miócitos Cardíacos/efeitos dos fármacos , Coelhos , Obstrução do Fluxo Ventricular Externo/induzido quimicamente , Obstrução do Fluxo Ventricular Externo/diagnóstico por imagem
4.
Am J Physiol Heart Circ Physiol ; 308(5): H485-99, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25552307

RESUMO

Mitochondrial membrane potential (ΔΨm) depolarization has been implicated in the loss of excitability (asystole) during global ischemia, which is relevant for the success of defibrillation and resuscitation after cardiac arrest. However, the relationship between ΔΨm depolarization and asystole during no-flow ischemia remains unknown. We applied spatial Fourier analysis to confocally recorded fluorescence emitted by ΔΨm-sensitive dye tetramethylrhodamine methyl ester. The time of ischemic ΔΨm depolarization (tmito_depol) was defined as the time of 50% decrease in the magnitude of spectral peaks reflecting ΔΨm. The time of asystole (tasys) was determined as the time when spontaneous and induced ventricular activity ceased to exist. Interventions included tachypacing (150 ms), myosin II ATPase inhibitor blebbistatin (heart immobilizer), and the combination of blebbistatin and the inhibitor of glycolysis iodoacetate. In the absence of blebbistatin, confocal images were obtained during brief perfusion with hyperkalemic solution and after the contraction failed between 7 and 15 min of ischemia. In control, tmito_depol and tasys were 24.4 ± 6.0 and 26.0 ± 5.0 min, respectively. Tachypacing did not significantly affect either parameter. Blebbistatin dramatically delayed tmito_depol and tasys (51.4 ± 8.6 and 45.7 ± 5.3 min, respectively; both P < 0.0001 vs. control). Iodoacetate combined with blebbistatin accelerated both events (tmito_depol, 12.7 ± 1.8 min; and tasys, 6.5 ± 1.1 min; both P < 0.03 vs. control). In all groups pooled together, tasys was strongly correlated with tmito_depol (R(2) = 0.845; P < 0.0001). These data may indicate a causal relationship between ΔΨm depolarization and asystole or a similar dependence of the two events on energy depletion during ischemia. Our results urge caution against the use of blebbistatin in studies addressing pathophysiology of myocardial ischemia.


Assuntos
Trifosfato de Adenosina/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Sístole , Animais , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Coelhos
5.
J Physiol ; 591(11): 2781-94, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23529126

RESUMO

Timing and pattern of mitochondrial potential (m) depolarization during no-flow ischaemia-reperfusion (I-R) remain controversial, at least in part due to difficulties in interpreting the changes in the fluorescence of m-sensitive dyes such as TMRM. The objective of this study was to develop a new approach for interpreting confocal TMRM signals during I-R based on spatial periodicity of mitochondrial packaging in ventricular cardiomyocytes. TMRM fluorescence (FTMRM) was recorded from Langendorff-perfused rabbit hearts immobilized with blebbistatin using either a confocal microscope or an optical mapping system. The hearts were studied under normal conditions, during mitochondrial uncoupling using the protonophore FCCP, and during I-R. Confocal images of FTMRM were subjected to spatial Fourier transform which revealed distinct peaks at a spatial frequency of ∼2 µm(-1). The area under the peak (MPA) progressively decreased upon application of increasing concentrations of FCCP (0.3-20 µm), becoming undetectable at 5-20 µm FCCP. During ischaemia, a dramatic decrease in MPA, reaching the low/undetectable level comparable to that induced by 5-20 µm FCCP, was observed between 27 and 69 min of ischaemia. Upon reperfusion, a heterogeneous MPA recovery was observed, but not a de novo MPA decrease. Both confocal and wide-field imaging registered a consistent decrease in spatially averaged FTMRM in the presence of 5 µm FCCP, but no consistent change in this parameter during I-R. We conclude that MPA derived from confocal images provides a sensitive and specific indicator of significant mitochondrial depolarization or recovery during I-R. In contrast, spatially averaged FTMRM is not a reliable indicator of m changes during I-R.


Assuntos
Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão/metabolismo , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Área Sob a Curva , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Análise de Fourier , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Rodaminas/química , Rodaminas/farmacologia , Análise Espectral
6.
Heart Rhythm ; 9(9): 1493-500, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22537886

RESUMO

BACKGROUND: Voltage-sensitive dyes are important tools for mapping electrical activity in the heart. However, little is known about the effects of voltage-sensitive dyes on cardiac electrophysiology. OBJECTIVE: To test the hypothesis that the voltage-sensitive dye di-4-ANEPPS modulates cardiac impulse propagation. METHODS: Electrical and optical mapping experiments were performed in isolated Langendorff perfused guinea pig hearts. The effect of di-4-ANEPPS on conduction velocity and anisotropy of propagation was quantified. HeLa cells expressing connexin 43 were used to evaluate the effect of di-4-ANEPPS on gap junctional conductance. RESULTS: In electrical mapping experiments, di-4-ANEPPS (7.5 µM) was found to decrease both longitudinal and transverse conduction velocities significantly compared with control. No change in the anisotropy of propagation was observed. Similar results were obtained in optical mapping experiments. In these experiments, the effect of di-4-ANEPPS was dose dependent. di-4-ANEPPS had no detectable effect on connexin 43-mediated gap junctional conductance in transfected HeLa cells. CONCLUSION: Our results demonstrate that the voltage-sensitive dye di-4-ANEPPS directly and dose-dependently modulates cardiac impulse propagation. The effect is not likely mediated by connexin 43 inhibition. Our results highlight an important caveat that should be taken into account when interpreting data obtained using di-4-ANEPPS in cardiac preparations.


Assuntos
Mapeamento Potencial de Superfície Corporal , Corantes Fluorescentes/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Coração/efeitos dos fármacos , Compostos de Piridínio/farmacologia , Potenciais de Ação , Animais , Anisotropia , Eletrofisiologia Cardíaca , Conexina 43 , Conexinas , Junções Comunicantes , Cobaias , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA