Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pathogens ; 12(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003813

RESUMO

Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.

2.
iScience ; 26(7): 107108, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534171

RESUMO

Lipid metabolism is critical for insect reproduction, especially for species that invest heavily in the early developmental stages of their offspring. The role of symbiotic bacteria during this process is understudied but likely essential. We examined the role of lipid metabolism during the interaction between the viviparous tsetse fly (Glossina morsitans morsitans) and its obligate endosymbiotic bacteria (Wigglesworthia glossinidia) during tsetse pregnancy. We observed increased CTP:phosphocholine cytidylyltransferase (cct1) expression during pregnancy, which is critical for phosphatidylcholine biosynthesis in the Kennedy pathway. Experimental removal of Wigglesworthia impaired lipid metabolism via disruption of the Kennedy pathway, yielding obese mothers whose developing progeny starve. Functional validation via experimental cct1 suppression revealed a phenotype similar to females lacking obligate Wigglesworthia symbionts. These results indicate that, in Glossina, symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity.

3.
Biology (Basel) ; 12(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36979125

RESUMO

Melanin is present in various biological substrates where it may participate in several processes, from innate immunity to the still-unsolved opposite roles in antioxidant protection, including photoprotection and the related ability to interact with light. Melanin-light interaction has also been an important source of inspiration for the development of innovative bioengineering applications. These are based on melanin's light-energy-absorption ability of its chemically and structurally complex components and precursors, and on the improvement in analytical and diagnostic procedures in biomedicine. In this regard, here, we characterized the fluorescence spectral properties of melanin and of its precursor L-tyrosine in an aqueous solution during spontaneous melanization. Besides the confirmation of the typical fluorescence-emission signature of melanin and L-tyrosine, we provide additional insights on both emission and excitation spectra recorded during melanization. On these bases, we performed a subsequent characterization on the aqueous extracts from two different melanin-containing biological substrates, namely hairs from a domestic black cat and eggs from the Asian tiger mosquito. The results from the mild extraction procedure, purposely applied to obtain only the soluble components, combined with fluorescence spectral analysis are expected to promote further investigation of the melanization processes, particularly in insects.

4.
Curr Med Chem ; 30(40): 4506-4532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703602

RESUMO

Hydrogen sulfide (H2S) is an endogenous gaseous molecule present in all living organisms that has been traditionally studied for its toxicity. Interestingly, increased understanding of H2S effects in organ physiology has recently shown its relevance as a signalling molecule, with potentially important implications in variety of clinical disorders, including cancer. H2S is primarily produced in mammalian cells under various enzymatic pathways are target of intense research biological mechanisms, and therapeutic effects of H2S. Herein, we describe the physiological and biochemical properties of H2S, the enzymatic pathways leading to its endogenous production and its catabolic routes. In addition, we discuss the role of currently known H2S-releasing agents, or H2S donors, including their potential as therapeutic tools. Then we illustrate the mechanisms known to support the pleiotropic effects of H2S, with a particular focus on persulfhydration, which plays a key role in H2S-mediating signalling pathways. We then address the paradoxical role played by H2S in tumour biology and discuss the potential of exploiting H2S levels as novel cancer biomarkers and diagnostic tools. Finally, we describe the most recent preclinical applications focused on assessing the anti-cancer impact of most common H2S-releasing compounds. While the evidence in favour of H2S as an alternative cancer therapy in the field of translational medicine is yet to be clearly provided, application of H2S is emerging as a potent anticancer therapy in preclinical trails.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Pró-Fármacos , Animais , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Transdução de Sinais , Neoplasias/tratamento farmacológico , Mamíferos/metabolismo
5.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203417

RESUMO

Malpighian tubules (MTs) are arthropod excretory organs crucial for the osmoregulation, detoxification and excretion of xenobiotics and metabolic wastes, which include tryptophan degradation products along the kynurenine (KYN) pathway. Specifically, the toxic intermediate 3-hydroxy kynurenine (3-HK) is metabolized through transamination to xanthurenic acid or in the synthesis of ommochrome pigments. Early investigations in Drosophila larval fat bodies revealed an intracellular autofluorescence (AF) that depended on tryptophan administration. Subsequent observations documented AF changes in the MTs of Drosophila eye-color mutants genetically affecting the conversion of tryptophan to KYN or 3-HK and the intracellular availability of zinc ions. In the present study, the AF properties of the MTs in the Asian tiger mosquito, Aedes albopictus, were characterized in different stages of the insect's life cycle, tryptophan-administered larvae and blood-fed adult females. Confocal imaging and microspectroscopy showed AF changes in the distribution of intracellular, brilliant granules and in the emission spectral shape and amplitude between the proximal and distal segments of MTs across the different samples. The findings suggest AF can serve as a promising marker for investigating the functional status of MTs in response to metabolic alterations, contributing to the use of MTs as a potential research model in biomedicine.


Assuntos
Aedes , Cinurenina , Triptofano , Feminino , Animais , Túbulos de Malpighi , Drosophila , Larva
6.
Cells ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497118

RESUMO

Numerous studies recently showed that the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating the ionotropic GABAA receptors on cerebrovascular endothelial cells, whereas the endothelial role of the metabotropic GABAB receptors is still unknown. Preliminary evidence showed that GABAA receptor stimulation can induce an increase in endothelial Ca2+ levels, but the underlying signaling pathway remains to be fully unraveled. In the present investigation, we found that GABA evoked a biphasic elevation in [Ca2+]i that was initiated by inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-dependent Ca2+ release from neutral and acidic Ca2+ stores, respectively, and sustained by store-operated Ca2+ entry. GABAA and GABAB receptors were both required to trigger the endothelial Ca2+ response. Unexpectedly, we found that the GABAA receptors signal in a flux-independent manner via the metabotropic GABAB receptors. Likewise, the full Ca2+ response to GABAB receptors requires functional GABAA receptors. This study, therefore, sheds novel light on the molecular mechanisms by which GABA controls endothelial signaling at the neurovascular unit.


Assuntos
Células Endoteliais , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Células Endoteliais/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/metabolismo , Encéfalo/metabolismo
7.
Cells ; 11(19)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36231082

RESUMO

BACKGROUND: Platelets can support cancer progression via the release of microparticles and microvesicles that enhance the migratory behaviour of recipient cancer cells. We recently showed that platelet-derived extracellular vesicles (PEVs) stimulate migration and invasiveness in highly metastatic MDA-MB-231 cells by stimulating the phosphorylation of p38 MAPK and the myosin light chain 2 (MLC2). Herein, we assessed whether the pro-migratory effect of PEVs involves the remodelling of the Ca2+ handling machinery, which drives MDA-MB-231 cell motility. METHODS: PEVs were isolated from human blood platelets, and Fura-2/AM Ca2+ imaging, RT-qPCR, and immunoblotting were exploited to assess their effect on intracellular Ca2+ dynamics and Ca2+-dependent migratory processes in MDA-MB-231 cells. RESULTS: Pretreating MDA-MB-231 cells with PEVs for 24 h caused an increase in Ca2+ release from the endoplasmic reticulum (ER) due to the up-regulation of SERCA2B and InsP3R1/InsP3R2 mRNAs and proteins. The consequent enhancement of ER Ca2+ depletion led to a significant increase in store-operated Ca2+ entry. The larger Ca2+ mobilization from the ER was required to potentiate serum-induced migration by recruiting p38 MAPK and MLC2. CONCLUSIONS: PEVs stimulate migration in the highly metastatic MDA-MB-231 breast cancer cell line by inducing a partial remodelling of the Ca2+ handling machinery.


Assuntos
Neoplasias da Mama , Cálcio/metabolismo , Vesículas Extracelulares , Plaquetas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Feminino , Fura-2 , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Eur J Histochem ; 66(4)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36128772

RESUMO

Autofluorescence (AF) in mosquitoes is currently poorly explored, despite its great potential as a marker of body structures and biological functions. Here, for the first time AF in larval heads of two mosquitoes of key public health importance, Aedes albopictus and Culex pipiens, is studied using fluorescence imaging and spectrofluorometry, similarly to a label-free histochemical approach. In generally conserved distribution patterns, AF shows differences between mouth brushes and antennae of the two species. The blue AF ascribable to resilin at the antennal bases, more extended in Cx. pipiens, suggests a potential need to support different antennal movements. The AF spectra larger in Cx. pipiens indicate a variability in material composition and properties likely relatable to mosquito biology, including diverse feeding and locomotion behaviours with implications for vector control.


Assuntos
Aedes , Culex , Animais , Larva , Mosquitos Vetores
9.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889334

RESUMO

Light-based phenomena in insects have long attracted researchers' attention. Surface color distribution patterns are commonly used for taxonomical purposes, while optically-active structures from Coleoptera cuticle or Lepidoptera wings have inspired technological applications, such as biosensors and energy accumulation devices. In Diptera, besides optically-based phenomena, biomolecules able to fluoresce can act as markers of bio-metabolic, structural and behavioral features. Resilin or chitinous compounds, with their respective blue or green-to-red autofluorescence (AF), are commonly related to biomechanical and structural properties, helpful to clarify the mechanisms underlying substrate adhesion of ectoparasites' leg appendages, or the antennal abilities in tuning sound detection. Metarhodopsin, a red fluorescing photoproduct of rhodopsin, allows to investigate visual mechanisms, whereas NAD(P)H and flavins, commonly relatable to energy metabolism, favor the investigation of sperm vitality. Lipofuscins are AF biomarkers of aging, as well as pteridines, which, similarly to kynurenines, are also exploited in metabolic investigations. Beside the knowledge available in Drosophila melanogaster, a widely used model to study also human disorder and disease mechanisms, here we review optically-based studies in other dipteran species, including mosquitoes and fruit flies, discussing future perspectives for targeted studies with various practical applications, including pest and vector control.


Assuntos
Drosophila melanogaster , Sêmen , Animais , Biomarcadores/metabolismo , Quitina/química , Drosophila , Drosophila melanogaster/metabolismo , Humanos , Masculino , Mosquitos Vetores , NAD , Sêmen/metabolismo , Asas de Animais/metabolismo
11.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163978

RESUMO

Light-based events in insects deserve increasing attention for various reasons. Besides their roles in inter- and intra-specific visual communication, with biological, ecological and taxonomical implications, optical properties are also promising tools for the monitoring of insect pests and disease vectors. Among these is the Asian tiger mosquito, Aedes albopictus, a global arbovirus vector. Here we have focused on the autofluorescence characterization of Ae. albopictus adults using a combined imaging and spectrofluorometric approach. Imaging has evidenced that autofluorescence rises from specific body compartments, such as the head appendages, and the abdominal and leg scales. Spectrofluorometry has demonstrated that emission consists of a main band in the 410-600 nm region. The changes in the maximum peak position, between 430 nm and 500 nm, and in the spectral width, dependent on the target structure, indicate the presence, at variable degrees, of different fluorophores, likely resilin, chitin and melanins. The aim of this work has been to provide initial evidence on the so far largely unexplored autofluorescence of Ae. albopictus, to furnish new perspectives for the set-up of species- and sex-specific investigation of biological functions as well as of strategies for in-flight direct detection and surveillance of mosquito vectors.


Assuntos
Aedes/metabolismo , Medições Luminescentes/métodos , Proteínas Luminescentes/metabolismo , Aedes/virologia , Animais , Arbovírus , Feminino , Proteínas Luminescentes/análise , Masculino , Mosquitos Vetores
12.
Front Physiol ; 12: 729440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690804

RESUMO

Insect seminal fluid, the non-sperm component of the ejaculate, comprises a variegated set of molecules, including, but not limited to, lipids, proteins, carbohydrates, salts, hormones, nucleic acids, and vitamins. The identity and functional role of seminal fluid proteins (SFPs) have been widely investigated, in multiple species. However, most of the other small molecules in insect ejaculates remain uncharacterized. Metabolomics is currently adopted to deepen our understanding of complex biological processes and in the last 15years has been applied to answer different physiological questions. Technological advances in high-throughput methods for metabolite identification such as mass spectrometry and nuclear magnetic resonance (NMR) are now coupled to an expanded bioinformatics toolbox for large-scale data analysis. These improvements allow for the processing of smaller-sized samples and for the identification of hundreds to thousands of metabolites, not only in Drosophila melanogaster but also in disease vectors, animal, and agricultural pests. In this review, we provide an overview of the studies that adopted metabolomics-based approaches in insects, with a particular focus on the reproductive tract (RT) of both sexes and the ejaculate. Progress in the field of metabolomics will contribute not only to achieve a deeper understanding of the composition of insect ejaculates and how they are affected by endogenous and exogenous factors, but also to provide increasingly powerful tools to decipher the identity and molecular interactions between males and females during and after mating.

13.
BMC Biol ; 19(1): 211, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556101

RESUMO

BACKGROUND: Glossina species (tsetse flies), the sole vectors of African trypanosomes, maintained along their long evolutionary history a unique reproductive strategy, adenotrophic viviparity. Viviparity reduces their reproductive rate and, as such, imposes strong selective pressures on males for reproductive success. These species live in sub-Saharan Africa, where the distributions of the main sub-genera Fusca, Morsitans, and Palpalis are restricted to forest, savannah, and riverine habitats, respectively. Here we aim at identifying the evolutionary patterns of the male reproductive genes of six species belonging to these three main sub-genera. We then interpreted the different patterns we found across the species in the light of viviparity and the specific habitat restrictions, which are known to shape reproductive behavior. RESULTS: We used a comparative genomic approach to build consensus evolutionary trees that portray the selective pressure acting on the male reproductive genes in these lineages. Such trees reflect the long and divergent demographic history that led to an allopatric distribution of the Fusca, Morsitans, and Palpalis species groups. A dataset of over 1700 male reproductive genes remained conserved over the long evolutionary time scale (estimated at 26.7 million years) across the genomes of the six species. We suggest that this conservation may result from strong functional selective pressure on the male imposed by viviparity. It is noteworthy that more than half of these conserved genes are novel sequences that are unique to the Glossina genus and are candidates for selection in the different lineages. CONCLUSIONS: Tsetse flies represent a model to interpret the evolution and differentiation of male reproductive biology under different, but complementary, perspectives. In the light of viviparity, we must take into account that these genes are constrained by a post-fertilization arena for genomic conflicts created by viviparity and absent in ovipositing species. This constraint implies a continuous antagonistic co-evolution between the parental genomes, thus accelerating inter-population post-zygotic isolation and, ultimately, favoring speciation. Ecological restrictions that affect reproductive behavior may further shape such antagonistic co-evolution.


Assuntos
Moscas Tsé-Tsé , Animais , Ecossistema , Genômica , Masculino , Reprodução/genética , Trypanosoma , Moscas Tsé-Tsé/genética
14.
Insects ; 12(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946603

RESUMO

The Dipteran family Tephritidae (true fruit flies) comprises more than 5000 species classified in 500 genera distributed worldwide. Tephritidae include devastating agricultural pests and highly invasive species whose spread is currently facilitated by globalization, international trade and human mobility. The ability to identify and exploit a wide range of host plants for oviposition, as well as effective and diversified reproductive strategies, are among the key features supporting tephritid biological success. Intraspecific communication involves the exchange of a complex set of sensory cues that are species- and sex-specific. Chemical signals, which are standing out in tephritid communication, comprise long-distance pheromones emitted by one or both sexes, cuticular hydrocarbons with limited volatility deposited on the surrounding substrate or on the insect body regulating medium- to short-distance communication, and host-marking compounds deposited on the fruit after oviposition. In this review, the current knowledge on tephritid chemical communication was analysed with a special emphasis on fruit fly pest species belonging to the Anastrepha, Bactrocera, Ceratitis, and Rhagoletis genera. The multidisciplinary approaches adopted for characterising tephritid semiochemicals, and the real-world applications and challenges for Integrated Pest Management (IPM) and biological control strategies are critically discussed. Future perspectives for targeted research on fruit fly chemical communication are highlighted.

15.
J Chem Ecol ; 47(3): 265-279, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33656626

RESUMO

The Mediterranean fruit fly (medfly), Ceratitis capitata, is a worldwide pest of agriculture able to use olfactory cues to locate habitat, food sources, mates and oviposition sites. The sensitivity of medfly olfaction has been exploited to develop olfactory-based attractants that are currently important tools for detection, control and eradication of its populations. Among these is Cera Trap® (BIOIBERICA, S.A.U.), a cost-effective bait. Here we used coupled gas chromatography/electroantennographic detection (GC-EAD) and GC/mass spectrometry (GC-MS) approaches to characterize the medfly antennally-active compounds released by this lure. We identified GC peaks corresponding to chemicals belonging to six different classes including heterocyclic aromatic compounds, aliphatic alcohols, aldehydes, esters, sesquiterpene hydrocarbons, and aromatic alcohols. We tested ten potential candidate volatiles belonging to these classes and predicted to be emitted by the lure and found that they were eliciting electroantennographic responses in medfly adults. These results will help in unravelling the physiological mechanisms of odor perception in both sexes, especially in relation to Cera Trap® attractant activity, which in the field has been shown to be female-specific. These findings and their developments will ultimately expand the toolbox for medfly control in the field.


Assuntos
Ceratitis capitata/química , Ceratitis capitata/metabolismo , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Álcoois/análise , Aldeídos/análise , Animais , Fenômenos Eletrofisiológicos , Ésteres/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Compostos Heterocíclicos/análise , Hidrocarbonetos Aromáticos/análise , Masculino , Sesquiterpenos/análise , Olfato
16.
Front Microbiol ; 12: 624170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584626

RESUMO

The mosquito body hosts highly diverse microbes, which influence different physiological traits of both larvae and adults. The composition of adult mosquito microbiota is tightly linked to that of larvae, which are aquatic and feed on organic detritus, algae and prokaryotic microorganisms present in their breeding sites. Unraveling the ecological features of larval habitats that shape the structure of bacterial communities and their interactions with the mosquito host is still a poorly investigated topic in the Asian tiger mosquito Aedes albopictus, a highly invasive species that is vector of numerous arboviruses, including Dengue, Chikungunya, and Zika viruses. In this study, we investigated the composition of the bacterial community present in the water from a natural larval breeding site in which we separately reared wild-collected larvae and hatched eggs of the Foshan reference laboratory strain. Using sequence analysis of bacterial 16S rRNA gene amplicons, we comparatively analyzed the microbiota of the larvae and that of adult mosquitoes, deriving information about the relative impact of the breeding site water on shaping mosquito microbiota. We observed a higher bacterial diversity in breeding site water than in larvae or adults, irrespective of the origin of the sample. Moreover, larvae displayed a significantly different and most diversified microbial community than newly emerged adults, which appeared to be dominated by Proteobacteria. The microbiota of breeding site water significantly increased its diversity over time, suggesting the presence of a dynamic interaction among bacterial communities, breeding sites and mosquito hosts. The analysis of Wolbachia prevalence in adults from Foshan and five additional strains with different geographic origins confirmed the described pattern of dual wAlbA and wAlbB strain infection. However, differences in Wolbachia prevalence were detected, with one strain from La Reunion Island showing up to 18% uninfected individuals. These findings contribute in further understanding the dynamic interactions between the ecology of larval habitats and the structure of host microbiota, as well as providing additional information relative to the patterns of Wolbachia infection.

17.
Results Probl Cell Differ ; 69: 497-536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263885

RESUMO

Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.


Assuntos
Enterobacteriaceae/fisiologia , Interações entre Hospedeiro e Microrganismos , Simbiose , Moscas Tsé-Tsé/microbiologia , Wolbachia/fisiologia , Animais , Feminino , Masculino , Microbiota , Trypanosoma , Moscas Tsé-Tsé/parasitologia
18.
BMC Genet ; 21(Suppl 2): 125, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339494

RESUMO

BACKGROUND: The Oriental fruit fly, Bactrocera dorsalis, is a highly polyphagous invasive species with a high reproductive potential. In many tropical and subtropical parts of the world it ranks as one of the major pests of fruits and vegetables. Due to its economic importance, genetic, cytogenetic, genomic and biotechnological approaches have been applied to understand its biology and to implement the Sterile Insect Technique, currently a part of area-wide control programmes against this fly. Its chromosome complement includes five pairs of autosomes and the sex chromosomes. The X and Y sex chromosomes are heteromorphic and the highly heterochromatic and degenerate Y harbours the male factor BdMoY. The characterization of the Y chromosome in this fly apart from elucidating its role as primary sex determination system, it is also of crucial importance to understand its role in male biology. The repetitive nature of the Y chromosome makes it challenging to sequence and characterise. RESULTS: Using Representational Difference Analysis, fluorescent in situ hybridisation on mitotic chromosomes and in silico genome resources, we show that the B. dorsalis Y chromosome harbours transcribed sequences of gyf, (typo-gyf) a homologue of the Drosophila melanogaster Gigyf gene, and of a non-LTR retrotransposon R1. Similar sequences are also transcribed on the X chromosome. Paralogues of the Gigyf gene are also present on the Y and X chromosomes of the related species B. tryoni. Another identified Y-specific repetitive sequence linked to BdMoY appears to be specific to B. dorsalis. CONCLUSIONS: Our random scan of the Y chromosome provides a broad picture of its general composition and represents a starting point for further applicative and evolutionary studies. The identified repetitive sequences can provide a useful Y-marking system for molecular karyotyping of single embryos. Having a robust diagnostic marker associated with BdMoY will facilitate studies on how BdMoY regulates the male sex determination cascade during the embryonic sex-determination window. The Y chromosome, despite its high degeneracy and heterochromatic nature, harbours transcribed sequences of typo-gyf that may maintain their important function in post-transcriptional mRNA regulation. That transcribed paralogous copies of Gigyf are present also on the X and that this genomic distribution is maintained also in B. tryoni raises questions on the evolution of sex chromosomes in Bactrocera and other tephritids.


Assuntos
Marcadores Genéticos , Tephritidae/genética , Cromossomo Y/genética , Animais , Feminino , Genes de Insetos , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Caracteres Sexuais
19.
Front Microbiol ; 10: 2036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551973

RESUMO

Aedes spp. are a major public health concern due to their ability to be efficient vectors of dengue, Chikungunya, Zika, and other arboviruses. With limited vaccines available and no effective therapeutic treatments against arboviruses, the control of Aedes spp. populations is currently the only strategy to prevent disease transmission. Host-associated microbes (i.e., microbiota) recently emerged as a promising field to be explored for novel environmentally friendly vector control strategies. In particular, gut microbiota is revealing its impact on multiple aspects of Aedes spp. biology, including vector competence, thus being a promising target for manipulation. Here we describe the technological advances, which are currently expanding our understanding of microbiota composition, abundance, variability, and function in the two main arboviral vectors, the mosquitoes Aedes aegypti and Aedes albopictus. Aedes spp. microbiota is described in light of its tight connections with the environment, with which mosquitoes interact during their various developmental stages. Unraveling the dynamic interactions among the ecology of the habitat, the mosquito and the microbiota have the potential to uncover novel physiological interdependencies and provide a novel perspective for mosquito control.

20.
Genome Biol ; 20(1): 187, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477173

RESUMO

BACKGROUND: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.


Assuntos
Genoma de Inseto , Genômica , Insetos Vetores/genética , Trypanosoma/parasitologia , Moscas Tsé-Tsé/genética , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Genes Ligados ao Cromossomo X , Geografia , Proteínas de Insetos/genética , Masculino , Mutagênese Insercional/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência de Aminoácidos , Sintenia/genética , Wolbachia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA