Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 271: 120719, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33652266

RESUMO

Carbon fibers reinforced polymers (CFRPs) are prolifically finding applications in the medical field, moving beyond the aerospace and automotive industries. Owing to its high strength-to-weight ratio, lightness and radiolucency, CFRP-based materials are emerging to replace traditional metal-based medical implants. Numerous types of polymers matrices can be incorporated with carbon fiber using various manufacturing methods, creating composites with distinct properties. Thus, prior to biomedical application, comprehensive evaluation of material properties, biocompatibility and safety are of paramount importance. In this study, we systematically evaluated a series of novel CFRPs, aiming at analyzing biocompatibility for future development into medical implants or implantable drug delivery systems. These CFRPs were produced either via Carbon Fiber-Sheet Molding Compound or Fused Deposition Modelling-based additive manufacturing. Unlike conventional methods, both fabrication processes afford high production rates in a time-and cost-effective manner. Importantly, they offer rapid prototyping and customization in view of personalized medical devices. Here, we investigate the physicochemical and surface properties, material mutagenicity or cytotoxicity of 20 CFRPs, inclusive of 2 surface finishes, as well as acute and sub-chronic toxicity in mice and rabbits, respectively. We demonstrate that despite moderate in vitro physicochemical and surface changes over time, most of the CFRPs were non-mutagenic and non-cytotoxic, as well as biocompatible in small animal models. Future work will entail extensive material assessment in the context of orthopedic applications such as evaluating potential for osseointegration, and a chronic toxicity study in a larger animal model, pigs.


Assuntos
Materiais Biocompatíveis , Polímeros , Animais , Materiais Biocompatíveis/toxicidade , Carbono , Fibra de Carbono , Camundongos , Osseointegração , Próteses e Implantes , Coelhos , Suínos
2.
ACS Appl Mater Interfaces ; 10(38): 32233-32238, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30185043

RESUMO

Gas transport across nanoscale pores is determinant in molecular exchange in living organisms as well as in a broad spectrum of technologies. Here, we report an unprecedented theoretical and experimental analysis of gas transport in a consistent set of confining nanochannels ranging in size from the ultra-nanoscale to the sub-microscale. A generally applicable theoretical approach quantitatively predicting confined gas flow in the Knudsen and transition regime was developed. Unlike current theories, specifically designed for very simple channel geometries, our approach can be applied to virtually all geometries, for which the probability distribution of path lengths for particle-interface collisions can be computed, either analytically or by numerical simulations. To generate a much needed benchmark experimental model, we manufactured extremely reproducible membranes with two-dimensional nanochannels. Channel sizes ranged from 2.5 to 250 nm, and angstrom level of size control and interface tolerances were achieved using leading-edge nanofabrication techniques. We then measured gas flow in the Knudsen number range from 0.2 to 20. Excellent agreement between theoretical predictions and experimental data was found, demonstrating the validity and potential of our approach.

3.
Nanoscale ; 7(12): 5240-8, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25707848

RESUMO

General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (≤1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (≤1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others.


Assuntos
Preparações de Ação Retardada/síntese química , Sistemas de Liberação de Medicamentos/instrumentação , Fulerenos/administração & dosagem , Fulerenos/química , Membranas Artificiais , Microeletrodos , Preparações de Ação Retardada/efeitos da radiação , Dendrímeros/química , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Fulerenos/efeitos da radiação , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA