Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38594938

RESUMO

Imaging mass spectrometry (IMS) enables highly multiplexed, untargeted tissue mapping for a broad range of molecular classes, facilitating in situ biological discovery. Yet, challenges persist in molecular specificity, which is the ability to discern one molecule from another, and spatial specificity, which is the ability to link untargeted imaging data to specific tissue features. Instrumental developments have dramatically improved IMS spatial resolution, allowing molecular observations to be more readily associated with distinct tissue features across spatial scales, ranging from larger anatomical regions to single cells. High-performance mass analyzers and systems integrating ion mobility technologies are also becoming more prevalent, further improving molecular coverage and the ability to discern chemical identity. This review provides an overview of recent advancements in high-specificity IMS that are providing critical biological context to untargeted molecular imaging, enabling integrated analyses, and addressing advanced biomedical research applications.

2.
Nat Commun ; 13(1): 6461, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309517

RESUMO

Gi/o-coupled somatostatin or α2-adrenergic receptor activation stimulated ß-cell NKA activity, resulting in islet Ca2+ fluctuations. Furthermore, intra-islet paracrine activation of ß-cell Gi/o-GPCRs and NKAs by δ-cell somatostatin secretion slowed Ca2+ oscillations, which decreased insulin secretion. ß-cell membrane potential hyperpolarization resulting from Gi/o-GPCR activation was dependent on NKA phosphorylation by Src tyrosine kinases. Whereas, ß-cell NKA function was inhibited by cAMP-dependent PKA activity. These data reveal that NKA-mediated ß-cell membrane potential hyperpolarization is the primary and conserved mechanism for Gi/o-GPCR control of electrical excitability, Ca2+ handling, and insulin secretion.


Assuntos
Células Secretoras de Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sódio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Somatostatina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA