Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 12(8): e9179, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36016815

RESUMO

Many plants exchanged in the global redistribution of species in the last 200 years, particularly between South Africa and Australia, have become threatening invasive species in their introduced range. Refining our understanding of the genetic diversity and population structure of native and alien populations, introduction pathways, propagule pressure, naturalization, and initial spread, can transform the effectiveness of management and prevention of further introductions. We used 20,221 single nucleotide polymorphisms to reconstruct the invasion of a coastal shrub, Chrysanthemoides monilifera ssp. rotundata (bitou bush) from South Africa, into eastern Australia (EAU), and Western Australia (WAU). We determined genetic diversity and population structure across the native and introduced ranges and compared hypothesized invasion scenarios using Bayesian modeling. We detected considerable genetic structure in the native range, as well as differentiation between populations in the native and introduced range. Phylogenetic analysis showed the introduced samples to be most closely related to the southern-most native populations, although Bayesian analysis inferred introduction from a ghost population. We detected strong genetic bottlenecks during the founding of both the EAU and WAU populations. It is likely that the WAU population was introduced from EAU, possibly involving an unsampled ghost population. The number of private alleles and polymorphic SNPs successively decreased from South Africa to EAU to WAU, although heterozygosity remained high. That bitou bush remains an invasion threat in EAU, despite reduced genetic diversity, provides a cautionary biosecurity message regarding the risk of introduction of potentially invasive species via shipping routes.

2.
Geobiology ; 18(2): 152-166, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31769156

RESUMO

Molecular nitrogen (N2 ) constitutes the majority of Earth's modern atmosphere, contributing ~0.79 bar of partial pressure (pN2 ). However, fluctuations in pN2 may have occurred on 107 -109  year timescales in Earth's past, perhaps altering the isotopic composition of atmospheric nitrogen. Here, we explore an archive that may record the isotopic composition of atmospheric N2 in deep time: the foliage of cycads. Cycads are ancient gymnosperms that host symbiotic N2 -fixing cyanobacteria in modified root structures known as coralloid roots. All extant species of cycads are known to host symbionts, suggesting that this N2 -fixing capacity is perhaps ancestral, reaching back to the early history of cycads in the late Paleozoic. Therefore, if the process of microbial N2 fixation records the δ15 N value of atmospheric N2 in cycad foliage, the fossil record of cycads may provide an archive of atmospheric δ15 N values. To explore this potential proxy, we conducted a survey of wild cycads growing in a range of modern environments to determine whether cycad foliage reliably records the isotopic composition of atmospheric N2 . We find that neither biological nor environmental factors significantly influence the δ15 N values of cycad foliage, suggesting that they provide a reasonably robust record of the δ15 N of atmospheric N2 . Application of this proxy to the record of carbonaceous cycad fossils may not only help to constrain changes in atmospheric nitrogen isotope ratios since the late Paleozoic, but also could shed light on the antiquity of the N2 -fixing symbiosis between cycads and cyanobacteria.


Assuntos
Cianobactérias , Cycadopsida , Fósseis , Nitrogênio , Fixação de Nitrogênio , Simbiose
3.
Sci Rep ; 7(1): 772, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28396608

RESUMO

Barrow Island, north-west coast of Australia, is one of the world's significant conservation areas, harboring marsupials that have become extinct or threatened on mainland Australia as well as a rich diversity of plants and animals, some endemic. Access to construct a Liquefied Natural Gas (LNG) plant, Australia's largest infrastructure development, on the island was conditional on no non-indigenous species (NIS) becoming established. We developed a comprehensive biosecurity system to protect the island's biodiversity. From 2009 to 2015 more than 0.5 million passengers and 12.2 million tonnes of freight were transported to the island under the biosecurity system, requiring 1.5 million hrs of inspections. No establishments of NIS were detected. We made four observations that will assist development of biosecurity systems. Firstly, the frequency of detections of organisms corresponded best to a mixture log-normal distribution including the high number of zero inspections and extreme values involving rare incursions. Secondly, comprehensive knowledge of the island's biota allowed estimation of false positive detections (62% native species). Thirdly, detections at the border did not predict incursions on the island. Fourthly, the workforce detected more than half post-border incursions (59%). Similar approaches can and should be implemented for all areas of significant conservation value.


Assuntos
Conservação dos Recursos Naturais , Ilhas , Austrália , Biodiversidade
4.
Glob Chang Biol ; 23(4): 1661-1674, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27596590

RESUMO

Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a climex model for the global distribution of P. cinnamomi based on the pathogen's response to temperature and moisture and by incorporating extensive empirical evidence on the presence and absence of the pathogen. The climex model captured areas of climatic suitability where P. cinnamomi occurs that is congruent with all available records. The model was validated by the collection of soil samples from asymptomatic vegetation in areas projected to be suitable by the model for which there were few records. DNA was extracted, and the presence or absence of P. cinnamomi was determined by high-throughput sequencing (HTS). While not detected using traditional isolation methods, HTS detected P. cinnamomi at higher elevations in eastern Australia and central Tasmania as projected by the climex model. Further support for the climex model was obtained using the large data set from south-west Australia where the proportion of positive records in an area is related to the Ecoclimatic Index value for the same area. We provide for the first time a comprehensive global map of the current P. cinnamomi distribution, an improved climex model of the distribution, and a projection to 2080 of the distribution with predicted climate change. This information provides the basis for more detailed regional-scale modelling and supports risk assessment for governments to plan management of this important soil-borne plant pathogen.


Assuntos
Mudança Climática , Phytophthora/patogenicidade , Doenças das Plantas , Austrália , Dinâmica Populacional , Austrália do Sul , Tasmânia
5.
Biol Rev Camb Philos Soc ; 90(1): 31-59, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24618017

RESUMO

Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long-term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed-bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance-exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.


Assuntos
Ecossistema , Germinação/fisiologia , Plantas/classificação , Sementes/fisiologia , Plantas/genética , Solo
7.
PLoS One ; 7(7): e42140, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848733

RESUMO

Our aim was to model the current and future potential global distribution of Chloris truncata (windmill grass) based on the plant's biology, soil requirements and colonisation success. The growth response of C. truncata to constant temperatures and soil moisture levels were measured and estimated respectively, to develop parameters for a CLIMEX bioclimatic model of potential distribution. The native distribution in eastern Australia and naturalised distribution in Western Australia was also used to inform the model. Associations with soil types were assessed within the suitable bioclimatic region in Australia. The global projection of the model was tested against the distribution of soil types and the known successful and failed global introductions. The verified model was then projected to future conditions due to climate change. Optimal temperature for plant development was 28°C and the plant required 970 degree-days above a threshold of 10°C. Early collection records indicate that the species is native to Queensland, New South Wales and Victoria. The plant has been introduced elsewhere in Australia and throughout the world as a wool contaminant and as a potential pasture species, but some of the recorded establishments have failed to persist. The CLIMEX model projected to the world reflected effectively both the successful and failed distributions. The inclusion of soil associations improved the explanation of the observed distribution in Australia, but did not improve the ability to determine the potential distribution elsewhere, due to lack of similarity of soil types between continents. The addition of a climate change projection showed decreased suitability for this species in Australia, but increased suitability for other parts of the world, including regions where the plant previously failed to establish.


Assuntos
Internacionalidade , Modelos Estatísticos , Poaceae/crescimento & desenvolvimento , Austrália , Mudança Climática , Geografia , Espécies Introduzidas/estatística & dados numéricos , Estações do Ano , Solo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA