Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 151(8): 084302, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31470727

RESUMO

A suppressed-Doppler (Δν = 180 MHz) infrared spectrum of monodeuterated ammonium ions (NH3D+) has been obtained for the ν1 (symmetric) and ν4 (degenerate) N-H stretch bands via direct absorption high resolution IR laser spectroscopy in a planar slit jet discharge expansion. The ion is efficiently generated by H3 + protonation of NH2D in a discharge mixture of H2/NH2D, with the resulting expansion rapidly cooling the molecular ions into low rotational states. The first high-resolution infrared spectrum of ν1 is reported, as well as many previously unobserved transitions in the ν4 rovibrational manifold. Simultaneous observation of both ν1 and ν4 permits elucidation of both the vibrational ground and excited state properties of the ion, including rigorous benchmarking of band origins against high-level anharmonic ab initio theory as well as determination of the ν1:ν4 intensity ratio for comparison with bond-dipole model predictions. Ground-state combination differences from this work and earlier studies permit the rotational constants of NH3D+ to be determined to unprecedented accuracy, the results of which support previous laboratory and astronomical assignment of the 10-00 pure rotational transition and should aid future searches for other rotational transitions as well.

2.
J Chem Phys ; 149(14): 144303, 2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30316288

RESUMO

High-resolution rotationally resolved spectra of the N-H stretch vibrational mode (ν 1) of jet-cooled ND3H+ ions are collected and analyzed in a sub-Doppler slit-jet infrared spectrometer. The isotopomeric ammonium ions are generated by proton transfer from H3 + to ND3 in a discharge of an ND3/H2 gas mixture, whereby the slit jet expansion cools the nascent ND3H+ ions into lower rotational states. Rotational assignments are confirmed by four-line combination differences that agree to within the spectrometer precision (9 MHz). Based on precision two-line ground-state combination differences and a symmetric top Hamiltonian, the B, D J , and D JK rotational constants for the ground vibrational state of ND3H+ are determined with high precision for the first time. Approximate rotational constants for the ν 1 excited state are also determined, with a band origin at 3316.8425(19) cm-1 and in remarkable (∼0.1 cm-1) agreement with high level anharmonic theoretical predictions by Guo and co-workers [J. Phys. Chem. A, 120, 2185 (2016)]. Our results allow us to predict several low-J pure rotational transitions of ND3H+, which we hope will support future studies of this important ion in laboratory and astronomical rotational spectroscopy.

3.
J Chem Phys ; 149(2): 024302, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007389

RESUMO

The unexpected abundance of HNO in the photodecomposition of the radical 2-nitrosooxy ethyl (CH2CH2ONO) is investigated through calculations of the potential energy surface by the anti-Hermitian contracted Schrödinger equation (ACSE) method, which directly generates the 2-electron reduced density matrix. The ACSE, which is able to balance single-reference (dynamic) and multi-reference (static) correlation effects, reveals some subtle correlation effects along the intrinsic reaction coordinate (IRC) en route to NO + oxirane, an IRC which offers a potential bifurcation to the HNO + vinoxy product channel. These effects were not fully captured by either single-reference techniques, such as coupled cluster, or multi-reference techniques, such as second-order multi-reference perturbation theory. These correlation effects reveal small to moderate energy changes in key transition states, which have implications for the reaction mechanism as related to the production of HNO.

4.
J Phys Chem A ; 121(36): 6732-6741, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28862852

RESUMO

We used crossed laser-molecular beam scattering to study the primary photodissociation channels of chloroacetaldehyde (CH2ClCHO) at 157 nm. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence two other photodissociation channels: HCl photoelimination and C-C bond fission. This is the first direct evidence of the C-C bond fission channel in chloroacetaldehyde, and we found that it significantly competes with the C-Cl bond fission channel. We determined the total primary photodissociation branching fractions for C-Cl fission:HCl elimination:C-C fission to be 0.65:0.07:0.28. The branching between the primary channels suggests the presence of interesting excited state dynamics in chloroacetaldehyde. Some of the vinoxy radicals from C-Cl photofission and most of the ketene cofragments formed in HCl photoelimination have enough internal energy to undergo secondary dissociation. While our previous velocity map imaging study on the photodissociation of chloroacetaldehyde at 157 nm focused on the barrier for the unimolecular dissociation of vinoxy to H + ketene, this work shows that the HCl elimination channel contributed to the high kinetic energy portion of the m/z = 42 signal in that study.

5.
J Phys Chem A ; 121(33): 6262-6268, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28806080

RESUMO

These experiments report the dissociative photoionization of vinoxy radicals to m/z = 15 and 29. In a crossed laser-molecular beam scattering apparatus, we induce C-Cl bond fission in 2-chloroacetaldehyde by photoexcitation at 157 nm. Our velocity measurements, combined with conservation of angular momentum, show that 21% of the C-Cl photofission events form vinoxy radicals that are stable to subsequent dissociation to CH3 + CO or H + ketene. Photoionization of these stable vinoxy radicals, identified by their velocities, which are momentum-matched with the higher-kinetic-energy Cl atom photofragments, shows that the vinoxy radicals dissociatively photoionize to give signal at m/z = 15 and 29. We calibrated the partial photoionization cross section of vinoxy to CH3+ relative to the bandwidth-averaged photoionization cross section of the Cl atom at 13.68 eV to put the partial photoionization cross sections on an absolute scale. The resulting bandwidth-averaged partial cross sections are 0.63 and 1.3 Mb at 10.5 and 11.44 eV, respectively. These values are consistent with the upper limit to the cross section estimated from a study by Savee et al. on the O(3P) + propene bimolecular reaction. We note that the uncertainty in these values is primarily dependent on the signal attributed to C-Cl primary photofission in the m/z = 35 (Cl+) time-of-flight data. While the value is a rough estimate, the bandwidth-averaged partial photoionization cross section of vinoxy to HCO+ calculated from the signal at m/z = 29 at 11.53 eV is approximately half that of vinoxy to CH3+. We also present critical points on the potential energy surface of the vinoxy cation calculated at the G4//B3LYP/6-311++G(3df,2p) level of theory to support the observation of dissociative ionization of vinoxy to both CH3+ and HCO+.

6.
J Phys Chem A ; 120(27): 4973-87, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27124098

RESUMO

We first characterize the dissociation pathways of BrCH2CH2ONO, a substituted alkyl nitrite, upon photoexcitation at 193 nm under collision-free conditions, in a crossed laser-molecular beam scattering apparatus using vacuum ultraviolet photoionization detection. Three primary photodissociation pathways occur: photoelimination of HNO, leading to the products HNO + BrCH2CHO; C-Br bond photofission, leading to Br + CH2CH2ONO; and O-NO bond photofission, leading to NO + BrCH2CH2O. The data show that alkyl nitrites can eliminate HNO via a unimolecular mechanism in addition to the commonly accepted bulk disproportionation mechanism. Some of the products from the primary photodissociation pathways are highly vibrationally excited, so we then probe the product branching from the unimolecular dissociation of these unstable intermediates. Notably, the vibrationally excited CH2CH2ONO radicals undergo two channels predicted by statistical transition-state theory, and an additional non-intrinsic reaction coordinate channel, HNO elimination. CH2CH2ONO is formed with high rotational energy; by employing rotational models based on conservation of angular momentum, we predict, and verify experimentally, the kinetic energies of stable CH2CH2ONO radicals and the angular distribution of dissociation products. The major dissociation pathway of CH2CH2ONO is NO2 + ethene, and some of the NO2 is formed with sufficient internal energy to undergo further photodissociation. Nascent BrCH2CHO and CH2Br are also photodissociated upon absorption of a second 193 nm photon; we derive the kinetic energy release of these dissociations based on our data, noting similarities to the analogous photodissociation of ClCH2CHO and CH2Cl.

7.
J Phys Chem A ; 119(50): 12005-14, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26168367

RESUMO

This study characterizes two of the primary photodissociation channels of 2-bromoethyl nitrite, BrCH2CH2ONO, at 193 nm and the subsequent unimolecular dissociation channels of the nascent vibrationally excited BrCH2CH2O radicals produced from the O-NO bond photofission. We use a crossed laser-molecular beam scattering apparatus with electron bombardment detection. Upon photodissociation of BrCH2CH2ONO at 193 nm, the measured branching ratio between primary O-NO photofission and C-Br photofission is 3.9:1 (O-NO/C-Br). The measured O-NO photofission recoil kinetic energy distribution (P(ET)) peaks near 30 kcal/mol and extends from 20 to 50 kcal/mol. We use the O-NO photofission P(ET) to characterize the internal energy distribution in the nascent ground-electronic-state BrCH2CH2O radicals. At 193 nm, all of the BrCH2CH2O radicals are formed with enough internal energy to unimolecularly dissociate to CH2Br + H2CO or to BrCH2CHO + H. We also investigated the possibility of the BrCH2CH2O → CH2CHO + HBr reaction arising from the vibrationally excited BrCH2CH2O radicals produced from O-NO primary photodissociation. Signal strengths at HBr(+), however, demonstrate that the vinoxy product does not have HBr as a cofragment, so the BrCH2CH2O → HBr + vinoxy channel is negligible compared to the CH2Br + H2CO channel. We also report our computational prediction of the unimolecular dissociation channels of the vibrational excited CH2CH2ONO radical resulting from C-Br bond photofission. Our theoretical calculations on the ground-state CH2CH2ONO potential energy surface at the G4//B3LYP/6-311++G(3df,2p) level of theory give the energetics of the zero-point corrected minima and transition states. The lowest accessible barrier height for the unimolecular dissociation of CH2CH2ONO is a 12.7 kcal/mol barrier from the cis-ONO conformer, yielding NO2 + ethene. Our measured internal energy distribution of the nascent CH2CH2ONO radicals together with this computational result suggests that the CH2CH2ONO radicals will dissociate to NO2 + ethene, with a small possible branching to NO + oxirane.

8.
J Phys Chem A ; 119(28): 7293-304, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25658197

RESUMO

Following photodissociation of gaseous acryloyl chloride, CH2CHC(O)Cl, at 193 nm, temporally resolved vibration-rotational emission spectra of HCl (v ≤ 7, J ≤ 35) in region 2350-3250 cm(-1) and of CO (v ≤ 4, J ≤ 67) in region 1865-2300 cm(-1) were recorded with a step-scan Fourier-transform spectrometer. The HCl emission shows a minor low-J component for v ≤ 4 with average rotational energy Erot = 9 ± 3 kJ mol(-1) and vibrational energy Evib = 28 ± 7 kJ mol(-1) and a major high-J component for v ≤ 7 with average rotational energy Erot = 36 ± 6 kJ mol(-1) and vibrational energy Evib = 49 ± 9 kJ mol(-1); the branching ratio of these two channels is ∼0.2:0.8. Using electronic structure calculations to characterize the transition states and each intrinsic reaction coordinate, we find that the minor pathway corresponds to the four-center HCl-elimination of CH2ClCHCO following a 1,3-Cl-shift of CH2CHC(O)Cl, whereas the major pathway corresponds to the direct four-center HCl-elimination of CH2CHC(O)Cl. Although several channels are expected for CO produced from the secondary dissociation of C2H3CO and H2C═C═C═O, each produced from two possible dissociation channels of CH2CHC(O)Cl, the CO emission shows a near-Boltzmann rotational distribution with average rotational energy Erot = 21 ± 4 kJ mol(-1) and average vibrational energy Evib = 10 ± 4 kJ mol(-1). Consideration of the branching fractions suggests that the CO observed with greater vibrational excitation might result from secondary decomposition of H2C═C═C═O that was produced via the minor low-J HCl-elimination channel, while the internal state distributions of CO produced from the other three channels are indistinguishable. We also introduce a method for choosing the correct point along the intrinsic reaction coordinate for a roaming HCl elimination channel to generate a Franck-Condon prediction for the HCl vibrational energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA