Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Toxics ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850969

RESUMO

Chemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk. Rats were chronically treated with PTX (10 mg/Kg, 1qwx4) or CDDP (2 mg/Kg 2qwx4) or respective vehicles. Morpho-functional analyses were performed to verify the features of drug-induced peripheral neurotoxicity. Qualitative and quantitative immunohistochemistry, 3D immunofluorescence, immunoblotting, and transmission electron microscopy analyses were also performed to detect alterations in SGCs and their interconnections. We demonstrated that PTX, but not CDDP, produces a strong activation of SGCs in the DRG, by altering their interconnections and their physical contact with sensory neurons. SGCs may act as principal actors in PTX-induced peripheral neurotoxicity, paving the way for the identification of new druggable targets for the treatment and prevention of chemotherapy-induced peripheral neurotoxicity.

2.
Cancers (Basel) ; 14(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358670

RESUMO

Histone deacetylases (HDACs) are a group of enzymes that modify gene expression through the lysine acetylation of both histone and non-histone proteins, leading to a broad range of effects on various biological pathways. New insights on this topic broadened the knowledge on their biological activity and even more questions arose from those discoveries. The action of HDACs is versatile in biological pathways and, for this reason, inhibitors of HDACs (HDACis) have been proposed as a way to interfere with HDACs' involvement in tumorigenesis. In 2006, the first HDACi was approved by FDA for the treatment of cutaneous T-cell lymphoma; however, more selective HDACis were recently approved. In this review, we will consider new information on HDACs' expression and their regulation for the treatment of central and peripheral nervous system diseases.

3.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293396

RESUMO

Cellular communication and the transfer of information from one cell to another is crucial for cell viability and homeostasis. During the last decade, tunneling nanotubes (TNTs) have attracted scientific attention, not only as a means of direct intercellular communication, but also as a possible system to transport biological cargo between distant cells. Peculiar TNT characteristics make them both able to increase cellular survival capacities, as well as a potential target of neurodegenerative disease progression. Despite TNT formation having been documented in a number of cell types, the exact mechanisms triggering their formation are still not completely known. In this review, we will summarize and highlight those studies focusing on TNT formation in the nervous system, as well as their role in neurodegenerative diseases. Moreover, we aim to stress some possible mechanisms and important proteins probably involved in TNT formation in the nervous system.


Assuntos
Nanotubos , Doenças Neurodegenerativas , Humanos , Comunicação Celular/fisiologia
4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077454

RESUMO

Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a frequent adverse event of colorectal cancer treatment. OIPN encompasses a chronic and an acute syndrome. The latter consists of transient axonal hyperexcitability, due to unbalance in Na+ voltage-operated channels (Na+VOC). This leads to sustained depolarisation which can activate the reverse mode of the Na+/Ca2+ exchanger 2 (NCX2), resulting in toxic Ca2+ accumulation and axonal damage (ADa). We explored the role of NCX2 in in vitro and in vivo settings. Embryonic rat Dorsal Root Ganglia (DRG) organotypic cultures treated with SEA0400 (SEA), a NCX inhibitor, were used to assess neuroprotection in a proof-of-concept and pilot study to exploit NCX modulation to prevent ADa. In vivo, OHP treated mice (7 mg/Kg, i.v., once a week for 8 weeks) were compared with a vehicle-treated group (n = 12 each). Neurophysiological and behavioural testing were performed to characterise acute and chronic OIPN, and morphological analyses were performed to detect ADa. Immunohistochemistry, immunofluorescence, and western blotting (WB) analyses were also performed to demonstrate changes in NCX2 immunoreactivity and protein expression. In vitro, NCX inhibition was matched by ADa mitigation. In the in vivo part, after verifyingboth acute and chronic OIPN had ensued, we confirmed via immunohistochemistry, immunofluorescence, and WB that a significant NCX2 alteration had ensued in the OHP group. Our data suggest NCX2 involvement in ADa development, paving the way to a new line of research to prevent OIPN.


Assuntos
Síndromes Neurotóxicas , Trocador de Sódio e Cálcio , Animais , Axônios/metabolismo , Camundongos , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Oxaliplatina/efeitos adversos , Projetos Piloto , Ratos , Trocador de Sódio e Cálcio/metabolismo
5.
Cells ; 11(16)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010576

RESUMO

Neurons are permanent cells whose key feature is information transmission via chemical and electrical signals. Therefore, a finely tuned homeostasis is necessary to maintain function and preserve neuronal lifelong survival. The cytoskeleton, and in particular microtubules, are far from being inert actors in the maintenance of this complex cellular equilibrium, and they participate in the mobilization of molecular cargos and organelles, thus influencing neuronal migration, neuritis growth and synaptic transmission. Notably, alterations of cytoskeletal dynamics have been linked to alterations of neuronal excitability. In this review, we discuss the characteristics of the neuronal cytoskeleton and provide insights into alterations of this component leading to human diseases, addressing how these might affect excitability/synaptic activity, as well as neuronal functioning. We also provide an overview of the microscopic approaches to visualize and assess the cytoskeleton, with a specific focus on mitochondrial trafficking.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Humanos , Canais Iônicos/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo
6.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628600

RESUMO

Mesenchymal Stem Cells (MSCs) are adult multipotent cells able to increase sensory neuron survival: direct co-culture of MSCs with neurons is pivotal to observe a neuronal survival increase. Despite the identification of some mechanisms of action, little is known about how MSCs physically interact with neurons. The aim of this paper was to investigate and characterize the main mechanisms of interaction between MSCs and neurons. Morphological analysis showed the presence of gap junctions and tunneling nanotubes between MSCs and neurons only in direct co-cultures. Using a diffusible dye, we observed a flow from MSCs to neurons and further analysis demonstrated that MSCs donated mitochondria to neurons. Treatment of co-cultures with the gap junction blocker Carbenoxolone decreased neuronal survival, thus demonstrating the importance of gap junctions and, more in general, of cell communication for the MSC positive effect. We also investigated the role of extracellular vesicles; administration of direct co-cultures-derived vesicles was able to increase neuronal survival. In conclusion, our study demonstrates the presence and the importance of multiple routes of communication between MSCs and neurons. Such knowledge will allow a better understanding of the potential of MSCs and how to maximize their positive effect, with the final aim to provide the best protective treatment.


Assuntos
Células-Tronco Mesenquimais , Adulto , Comunicação Celular , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Humanos , Células Receptoras Sensoriais
7.
Toxics ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34822690

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity. There is an urgent need for extensive molecular and functional investigations aimed at understanding the mechanisms of CIPN. Furthermore, a reliable human cell culture system that recapitulates the diversity of neuronal modalities found in vivo and the pathophysiological changes that underlie CIPN would serve to advance the understanding of the pathogenesis of CIPN. The demonstration of experimental reproducibility in a human peripheral neuronal cell system will increase confidence that such an in vitro model is clinically useful, ultimately resulting in deeper exploration for the prevention and treatment of CIPN. Herein, we review current in vitro models with a focus on key characteristics and attributes desirable for an ideal human cell culture model relevant for CIPN investigations.

8.
Biomedicines ; 8(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384630

RESUMO

The advent of the new revolutionary approach based on regenerative medicine is progressively reshaping the therapeutic scenario of many different diseases, such as cardiovascular diseases and immune diseases, with encouraging results. During the last 10 years, many studies have also proposed the use of mesenchymal stem cells (MSCs), adult stem cells with several interesting properties already used in different experimental models, for the treatment of diabetes, however, reporting conflicting outcomes. These reasons have given rise to a question: are these cells a real trump card for the biomedical field? Are they really able to outclass the traditional therapies, or at least able to give an advantage over them? In this review, we will discuss the most promising results obtained with MSCs for the treatment of diabetes and its complications, we will compare the different therapeutic treatments applied as well as the most likely mechanisms of action, and overall we will give an in-depth overview of the pros and the cons of the use of MSCs for the therapy of both type-1 and type-2 diabetes.

9.
Int J Stem Cells ; 13(1): 116-126, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31887847

RESUMO

BACKGROUND AND OBJECTIVES: Transplantation of pancreatic islets is an intriguing new therapeutic option to face the worldwide spread problem of Type-I diabetes. Currently, its clinical use is limited by several problems, mainly based on the high number of islets required to restore normoglycaemia and by the low survival of the transplanted tissue. A promising attempt to overcome the limits to such an approach was represented by the use of Mesenchymal Stem Cells (MSC). Despite the encouraging results obtained with murine-derived MSC, little is still known about their protective mechanisms. The aim of the present study was to verify the effectiveness, (besides murine MSC), of clinically relevant human-derived MSC (hMSC) on protecting pancreatic islets, thus also shedding light on the putative differences between MSC of different origin. METHODS AND RESULTS: Threefold kinds of co-cultures were therefore in vitro set up (direct, indirect and mixed), to analyze the hMSC effect on pancreatic islet survival and function and to study the putative mechanisms involved. Although in a different way with respect to murine MSC, also human derived cells demonstrated to be effective on protecting pancreatic islet survival. This effect could be due to the release of some trophic factors, such as VEGF and Il-6, and by the reduction of inflammatory cytokine TNF-α. CONCLUSIONS: Therefore, hMSC confirmed their great clinical potential to improve the feasibility of pancreatic islet transplantation therapy against diabetes.

10.
Eur J Med Chem ; 158: 353-370, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30223122

RESUMO

In this manuscript we report on the design, synthesis and evaluation of dual Sigma 1 Receptor (S1R) modulators/Acetylcholinesterase (AChE) inhibitors endowed with antioxidant and neurotrophic properties, potentially able to counteract neurodegeneration. The compounds based on arylalkylaminoketone scaffold integrate the pharmacophoric elements of RRC-33, a S1R modulator developed by us, donepezil, a well-known AChE inhibitor, and curcumin, a natural antioxidant compound with neuroprotective properties. A small library of compounds was synthesized and preliminary in vitro screening performed. Some compounds showed good S1R binding affinity, selectivity towards S2R and N-Methyl-d-Aspartate (NMDA) receptor, AChE relevant inhibiting activity and are potentially able to bypass the BBB, as predicted by the in silico study. For the hits 10 and 20, the antioxidant profile was assessed in SH-SY5Y human neuroblastoma cell lines by evaluating their protective effect against H2O2 cytotoxicity and reactive oxygen species (ROS) production. Tested compounds resulted effective in decreasing ROS production, thus ameliorating the cellular survival. Moreover, compounds 10 and 20 showed to be effective in promoting the neurite elongation of Dorsal Root Ganglia (DRG), thus demonstrating a promising neurotrophic activity. Of note, the tested compounds did not show any cytotoxic effect at the concentration assayed. Relying on these encouraging results, both compounds will undergo a structure optimization program for the development of therapeutic candidates for neurodegenerative diseases treatment.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Receptores sigma/metabolismo , Animais , Antioxidantes/farmacocinética , Barreira Hematoencefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/farmacocinética , Cobaias , Humanos , Camundongos , Simulação de Acoplamento Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacocinética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Receptor Sigma-1
11.
Int J Mol Sci ; 19(9)2018 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-30223606

RESUMO

Diabetes is a worldwide disease which actually includes different disorders related to glucose metabolism. According to different epidemiological studies, patients affected by diabetes present a higher risk to develop both acute and chronic pancreatitis, clinical situations which, in turn, increase the risk to develop pancreatic cancer. Current therapies are able to adjust insulin levels according to blood glucose peak, but they only partly reach the goal to abrogate the consequent inflammatory milieu responsible for diabetes-related diseases. In recent years, many studies have investigated the possible use of adult mesenchymal stem cells (MSCs) as alternative therapeutic treatment for diabetes, with promising results due to the manifold properties of these cells. In this review we will critically analyze the many different uses of MSCs for both diabetes treatment and for the reduction of diabetes-related disease development, focusing on their putative molecular mechanisms.


Assuntos
Diabetes Mellitus/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Pancreatopatias/terapia , Animais , Biomarcadores , Diabetes Mellitus/diagnóstico , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Pancreatopatias/diagnóstico
12.
Mol Cell Neurosci ; 86: 16-24, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122704

RESUMO

Mesenchymal stem cells (MSCs) are adult bone marrow-derived stem cells actually proposed indifferently for the therapy of neurological diseases of both the Central (CNS) and the Peripheral Nervous System (PNS), as a panacea able to treat so many different diseases by their immunomodulatory ability and supportive action on neuronal survival. However, the identification of the exact mechanism of MSC action in the different diseases, although mandatory to define their real and concrete utility, is still lacking. Moreover, CNS and PNS neurons present many different biological properties, and it is still unclear if they respond in the same manner not only to MSC treatment, but also to injuries. For these reasons, in this study we compared the susceptibility of cortical and sensory neurons both to toxic drug exposure and to MSC action, in order to verify if these two neuronal populations can respond differently. Our results demonstrated that Cisplatin (CDDP), Glutamate, and Paclitaxel-treated sensory neurons were protected by the co-culture with MSCs, in different manners: through direct contact able to block apoptosis for CDDP- and Glutamate-treated neurons, and by the release of trophic factors for Paclitaxel-treated ones. A possible key soluble factor for MSC protection was Glutathione, spontaneously released by these cells. On the contrary, cortical neurons resulted more sensitive than sensory ones to the toxic action of the drugs, and overall MSCs failed to protect them. All these data identified for the first time a different susceptibility of cortical and sensory neurons, and demonstrated a protective action of MSCs only against drugs in peripheral neurotoxicity.


Assuntos
Células-Tronco Adultas/transplante , Córtex Cerebral/fisiologia , Gânglios Espinais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Cisplatino/toxicidade , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos
13.
Future Med Chem ; 9(17): 2029-2051, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29076758

RESUMO

Effective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide. To date, biological immunomodulatory drugs are effective and safe during short-term treatment, but they are suitable only for parenteral administration and they are expensive. Accordingly, academic and industrial environments are still focusing their efforts toward the development of new MS drugs. Considering that neurodegeneration is a contributory factor in the onset of MS, herein we will focus on the crucial role played by sigma 1 receptors (S1Rs) in MS. A pilot study was performed, evaluating the effect of the S1R agonist (R)-RC33 on rat dorsal root ganglia experimental model. The encouraging results support the potential of S1R agonists for MS treatment.


Assuntos
Compostos de Bifenilo/farmacologia , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Receptores sigma/agonistas , Animais , Compostos de Bifenilo/química , Modelos Animais de Doenças , Imunomodulação , Modelos Moleculares , Conformação Molecular , Esclerose Múltipla/imunologia , Fármacos Neuroprotetores/química , Piperidinas/química , Ratos , Receptores sigma/imunologia , Receptores sigma/metabolismo , Receptor Sigma-1
14.
J Peripher Nerv Syst ; 22(3): 156-161, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600844

RESUMO

Chemotherapy-induced peripheral neurotoxicity (CIPN) is a potentially dose-limiting side effect of the treatment of several cancers. CIPN is predominantly or exclusively sensory, and it is frequently associated with unpleasant symptoms, overall referred to as "pain." However, given the markedly different clinical presentation and course of CIPN depending on the antineoplastic drug used, the broad term "pain" in the specific context of CIPN needs to be reconsidered and refined. In fact, a precise identification of the features of CIPN has relevant implication in the design of rational-based clinical trials and in the selection of possible active drugs.


Assuntos
Dor/etiologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/complicações , Animais , Antineoplásicos/efeitos adversos , Humanos , Neoplasias/tratamento farmacológico
15.
Exp Neurol ; 288: 75-84, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27851902

RESUMO

Type-1 Diabetes is generally treated with exogenous insulin administration. Despite treatment, a very common long term consequence of diabetes is the development of a disabling and painful peripheral neuropathy. The transplantation of pancreatic islets is an advanced alternative therapeutic approach, but its clinical application is still very limited, mainly because of the great number of islets required to complete the procedure and of their short-term survival. An intriguing method to improve the performance of pancreatic islets transplantation is the co-transplantation of Mesenchymal Stem Cells (MSCs), adult stem cells already known to support the survival of different cellular populations. In this proof-of-concept study, we demonstrated using an in vivo model of diabetes, the ability of allogenic MSCs to reduce the number of pancreatic islets necessary to achieve glycemic control in diabetic rats, and overall their positive effect on diabetic neuropathy, with the reduction of all the neuropathic signs showed after disease induction. The cutback of the pancreatic islet number required to control glycemia and the regression of the painful neuropathy make MSC co-transplantation a very promising tool to improve the clinical feasibility of pancreatic islet transplantation for diabetes treatment.


Assuntos
Neuropatias Diabéticas/cirurgia , Neuropatias Diabéticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Análise de Variância , Animais , Antibióticos Antineoplásicos/farmacologia , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Masculino , Fibras Nervosas Mielinizadas/patologia , Condução Nervosa/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Pâncreas/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Estreptozocina/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
16.
17.
Neurosci Lett ; 631: 50-55, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27521752

RESUMO

BACKGROUND AND AIM: Cerebral ischemia is characterized by both acute and delayed neuronal injuries. Neuro-protection is a major issue that should be properly addressed from a pharmacological point of view, and cell-based treatment approaches are of interest due to their potential pleiotropic effects. Endothelial progenitor cells have the advantage of being mobilized from the bone marrow into the circulation, but have been less studied than other stem cells, such as mesenchymal stem cells. Therefore, the comparison between human endothelial progenitor cells (hEPC) and human mesenchymal progenitor cells (hMSC) in terms of efficacy in rescuing neurons from cell death after transitory ischemia is the aim of the current study, in the effort to address further directions. MATERIALS AND METHODS: In vitro model of oxygen-glucose deprivation (OGD) on a primary culture of rodent cortical neurons was set up with different durations of exposure: 1, 2 and 3hrs with assessment of neuron survival. The 2hrs OGD was chosen for the subsequent experiments. After 2hrs OGD neurons were either placed in indirect co-culture with hMSC or hEPC or cultured in hMSC or hEPC conditioned medium and cell viability was evaluated by MTT assay. RESULTS: At day 2 after 2hrs OGD exposure, mean neuronal survival was 47.9±24.2%. In contrast, after treatment with hEPC and hMSC indirect co-culture was 74.1±27.3%; and 69.4±18.8%, respectively. In contrast, treatment with conditioned medium did not provide any advantage in terms of survival to OGD neurons CONCLUSION: The study shows the efficacy of hEPC in indirect co-culture to rescue neurons from cell death after OGD, comparable to that of hMSC. hEPC deserve further studies given their potential interest for ischemia.


Assuntos
Isquemia Encefálica/prevenção & controle , Morte Celular , Sobrevivência Celular , Células Progenitoras Endoteliais/fisiologia , Neurônios/fisiologia , Animais , Isquemia Encefálica/metabolismo , Hipóxia Celular , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Técnicas de Cocultura/métodos , Glucose/deficiência , Humanos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Anticancer Res ; 35(10): 5383-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26408700

RESUMO

BACKGROUND/AIM: Peripheral neurotoxicity is a dose-limiting factor of many chemotherapeutic agents, including cisplatin. Mesenchymal stem cells are promising for the treatment of several neurological disorders, and our aim was to verify the neuroprotective potential of human mesenchymal stem cells (hMSCs) on dorsal root ganglia (DRG) exposed to cisplatin. MATERIALS AND METHODS: DRG were exposed to different cisplatin concentrations and then co-cultured with hMSCs or with hMSC-conditioned medium. RESULTS: hMSCs showed a neuroprotective effect on cisplatin-induced death of DRG, mediated by direct contact. Moreover, DRG exhibited an MSC-dependent promotion of neurite outgrowth, in particular at early time points. For this effect, the expression of Neurite Outgrowth Inhibitor (NOGO) and Myelin Associated Glycoprotein (MAG) by hMSCs was pivotal. CONCLUSION: hMSCs are a promising tool for reducing the neurotoxic effect of cisplatin.


Assuntos
Cisplatino/toxicidade , Meios de Cultivo Condicionados/farmacologia , Gânglios Espinais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Proteínas da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Neuritos/metabolismo , Proteínas Nogo , Ratos , Ratos Sprague-Dawley
19.
Neuroreport ; 26(6): 320-4, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25756909

RESUMO

Neurobasal medium (NBM) is a widely used medium for neuronal cultures, originally formulated to support survival of rat hippocampal neurons, but then optimized for several other neuronal subtypes. In the present study, the toxic effect of NBM on long-term cortical neuron cultures has been reported and investigated. A significant neuronal cell loss was observed 24 h after the total medium change performed at days in vitro 10. The neurotoxic effect was specifically because of NBM-A, a commercially derived modification of classic NBM, as neurons exposed to minimum essential medium for 24 h did not show the same mortality rate. We showed that the toxic effect was mediated by the N-methyl-D-aspartate receptor (NMDAr) as its inactivation partly prevented NBM-induced neuronal loss, and the addition of NMDAr activators, such as L-cysteine or glycine to minimum essential medium, reproduced the same toxicity rate observed in NBM. Besides the toxicity associated with NMDAr activation, the decreased antioxidative defenses also worsen (because of glutathione depletion) neuronal death, thus amplifying the effect of excitotoxic amino acids. Indeed, glutathione supplementation by the addition of its precursor N-acetyl-cysteine resulted in an increase in neuronal survival that partially prevented NBM-A toxicity. These results evidenced, on the one hand, the unsuitability of NBM-A for long-term neuronal culture, and on the other, they highlight the importance of selection of more suitable culture conditions.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Meios de Cultivo Condicionados/toxicidade , Neurônios/efeitos dos fármacos , Cultura Primária de Células/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Cisteína/análogos & derivados , Cisteína/toxicidade , Glicina/análogos & derivados , Glicina/toxicidade , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
20.
Toxics ; 3(3): 322-341, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29051467

RESUMO

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a dose-limiting side effect of several antineoplastic drugs which significantly reduces patients' quality of life. Although different molecular mechanisms have been investigated, CIPN pathobiology has not been clarified yet. It has largely been recognized that Dorsal Root Ganglia are the main targets of chemotherapy and that the longest nerves are the most damaged, together with fast axonal transport. Indeed, this bidirectional cargo-specific transport has a pivotal role in neuronal function and its impairment is involved in several neurodegenerative and neurodevelopmental diseases. Literature data demonstrate that, despite different mechanisms of action, all antineoplastic agents impair the axonal trafficking to some extent and the severity of the neuropathy correlates with the degree of damage on this bidirectional transport. In this paper, we will examine the effect of the main old and new chemotherapeutic drug categories on axonal transport, with the aim of clarifying their potential mechanisms of action, and, if possible, of identifying neuroprotective strategies, based on the knowledge of the alterations induced by each drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA