Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Pharm ; 649: 123626, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000647

RESUMO

A direct oral anticoagulant rivaroxaban fails to prevent stroke and systemic embolism in one-to-several percent of patients with nonvalvular atrial fibrillation (NVAF), but the reasons are unknown. The study used semi-mechanistic in vitro-in vivo prediction (IVIVP) modeling to explore the reasons for ineffective thrombosis prevention in NVAF patients. Steady-state drug concentrations in plasma were measured at 0 h (Ctrough), 3 h (C3h), and 12 h post-dosing in thirty-four patients treated with 20 mg rivaroxaban daily. The clinical data were compared against "virtual twins" generated with a novel IVIVP model that combined drug dissolution modeling, mechanistic description of gastric drug transit, and population pharmacokinetics defining the variability of drug disposition. The nonresponders had significantly lower C3h and Ctrough than the responders (p < 0.001) and the covariates included in the population pharmacokinetic submodel did not fully explain this difference. Simulations involving varied gastrointestinal parameters in the "virtual twins" revealed that lower small intestinal effective permeability (Peff), rather than a slower stomach emptying rate, could explain low rivaroxaban exposure in the nonresponders. IVIVP modeling was effectively used for exploring pharmacotherapy failure. Low Peff, found as a major determinant of ineffective rivaroxaban treatment, encourages further research to find (pato)physiological factors influencing suboptimal absorption.


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Humanos , Rivaroxabana , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/epidemiologia , Inibidores do Fator Xa/uso terapêutico , Anticoagulantes , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/epidemiologia
2.
Pharmaceutics ; 14(4)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35456551

RESUMO

The bioavailability of orally administered bisphosphonates is very low (<1%) due to their short absorption window in the proximal duodenum and high affinity for food. Food ingredients are able to bind the drug, but the presence of food extends the residence time of bisphosphonates in the absorption window. Therefore, the main goal of this study is to select a group of food products that are characterized by low binding affinity to bisphosphonates and thus will not reduce their availability upon concomitant administration. For this purpose, a combination of three methods was applied: (1) evaluation of sorption capacity for rows of digested food samples in a simulated intestinal environment; (2) evaluation of drug availability in simulated chyme; and (3) evaluation of drug availability using a simulating needle device. The results indicate that food products such as egg white and white bread are most suitable for consumption during oral bisphosphonate intake.

3.
Pharmaceutics ; 13(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071286

RESUMO

Sustained-release (SR) formulations may appear advantageous in first-in-human (FIH) study of innovative medicines. The newly developed SR matrix tablets require prolonged maintenance of API concentration in plasma and should be reliably assessed for the risk of uncontrolled release of the drug. In the present study, we describe the development of a robust SR matrix tablet with a novel G-protein-coupled receptor 40 (GPR40) agonist for first-in-human studies and introduce a general workflow for the successful development of SR formulations for innovative APIs. The hydrophilic matrix tablets containing the labeled API dose of 5, 30, or 120 mg were evaluated with several methods: standard USP II dissolution, bio-predictive dissolution tests, and the texture and matrix formation analysis. The standard dissolution tests allowed preselection of the prototypes with the targeted dissolution rate, while the subsequent studies in physiologically relevant conditions revealed unwanted and potentially harmful effects, such as dose dumping under an increased mechanical agitation. The developed formulations were exceptionally robust toward the mechanical and physicochemical conditions of the bio-predictive tests and assured a comparable drug delivery rate regardless of the prandial state and dose labeled. In conclusion, the introduced development strategy, when implemented into the development cycle of SR formulations with innovative APIs, may allow not only to reduce the risk of formulation-related failure of phase I clinical trial but also effectively and timely provide safe and reliable medicines for patients in the trial and their further therapy.

4.
J Pharm Biomed Anal ; 189: 113415, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574997

RESUMO

ELISA has become a standard analytical tool in the numerous branches of science and industry. Processing of the ELISA results may be a multistep process, often requiring a prior adaptation, using proprietary software, or exporting the results into external internet platforms. It may be problematic in the light of good documentation practices and maintaining good data integrity. In this paper, we present the development and application of the ELISA Tool software. The program is based on a Python scripting programming language and is available under an open-source license. The ELISA Tool allows users to fully control and validate the calculation procedure through a user-friendly graphical user interface. The modular architecture of the software allows its application in other information technology (IT) projects used for data processing in research laboratories. We successfully applied the ELISA Tool for the analysis of real-life samples. The ELISA Tool allowed import of the measurement data, an approximation of the calibration curves with two different algorithms, exploration and diagnostics of the model fit, and generation of the final report with the calculations while maintaining the raw data file unchanged. We report here for the first time the implementation of the idea of full control over data processing, from measured raw data to the final report. We obtained a transparent, open, registered system of data processing control, independent of third parties. The modular and flexible architecture of the created software encourages its further development following the individual demands of the users.


Assuntos
Linguagens de Programação , Software , Algoritmos , Calibragem , Ensaio de Imunoadsorção Enzimática
5.
J Cell Mol Med ; 21(7): 1394-1410, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28215051

RESUMO

The (pro)renin receptor [(P)RR, ATP6AP2] is a multifunctional transmembrane protein that activates local renin-angiotensin systems, but also interacts with Wnt pathways and vacuolar H+ -ATPase (V-ATPase) during organogenesis. The aim of this study was to characterize the role of ATP6AP2 in the cell cycle in more detail. ATP6AP2 down-regulation by siRNA in renal As4.1 cells resulted in a reduction in the rate of proliferation and a G0/G1 phase cell cycle arrest. We identified a number of novel target genes downstream of ATP6AP2 knock-down that were related to the primary cilium (Bbs-1, Bbs-3, Bbs-7, Rabl5, Ttc26, Mks-11, Mks-5, Mks-2, Tctn2, Nme7) and the cell cycle (Pierce1, Clock, Ppif). Accordingly, the number of cells expressing the primary cilium was markedly increased. We found no indication that these effects were dependent of V-ATPase activity, as ATP6AP2 knock-down did not affect lysosomal pH and bafilomycin A neither influenced the ciliary expression pattern nor the percentage of ciliated cells. Furthermore, ATP6AP2 appears to be essential for mitosis. ATP6AP2 translocated from the endoplasmatic reticulum to mitotic spindle poles (pro-, meta- and anaphase) and the central spindle bundle (telophase) and ATP6AP2 knock-down results in markedly deformed spindles. We conclude that ATP6AP2 is necessary for cell division, cell cycle progression and mitosis. ATP6AP2 also inhibits ciliogenesis, thus promoting proliferation and preventing differentiation.


Assuntos
Cílios/genética , Organogênese/genética , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , ATPases Vacuolares Próton-Translocadoras/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Retículo Endoplasmático/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Humanos , Mitose/genética , Renina/genética , Sistema Renina-Angiotensina/genética , Via de Sinalização Wnt/genética
6.
J Mol Med (Berl) ; 94(1): 61-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26256830

RESUMO

UNLABELLED: In the heart, secretory renin promotes hypertrophy, apoptosis, necrosis, fibrosis, and cardiac failure through angiotensin generation from angiotensinogen. Thus, inhibitors of the renin-angiotensin system are among the most potent drugs in the treatment of cardiac failure. Renin transcripts have been identified encoding a renin isoform with unknown targets and unknown functions that are localized to the cytosol and mitochondria. We hypothesize that this isoform, in contrast to secretory renin, exerts cardioprotective effects in an angiotensin-independent manner. Cells overexpressing cytosolic renin were generated by transfection or obtained from CX(exon2-9)renin transgenic rats. Overexpression of cytosolic renin reduced the rate of necrosis in H9c2 cardiomyoblasts and in primary cardiomyocytes after glucose depletion. These effects were not mediated by angiotensin generation since an inhibitor of renin activity did not influence the in vitro effects. siRNA-mediated knockdown of endogenous cytosolic renin increased the rate of necrosis and aggravated the pro-necrotic effects of glucose depletion. Isolated perfused hearts obtained from transgenic rats overexpressing cytosolic renin exhibited a 50% reduction of infarct size after ischemia-reperfusion injury. Cytosolic renin is essential for survival, both under basal conditions and during glucose starvation. The protective effects are angiotensin-independent and contrary to the known actions of secretory renin. KEY MESSAGES: A cytosolic isoform of renin with unknown functions is expressed in the heart. Cytosolic renin diminishes ischemia induced damage to the heart. The protective effects of cytosolic renin contradict the known function of secretory renin. The effects of cytosolic renin are not mediated via angiotensin generation. Renin-binding protein is a potential target for cytosolic renin.


Assuntos
Cardiotônicos/metabolismo , Isquemia Miocárdica/prevenção & controle , Necrose/prevenção & controle , Renina/metabolismo , Angiotensinogênio/metabolismo , Animais , Células Cultivadas , Citosol/metabolismo , Glucose/metabolismo , Coração/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Isoformas de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Renina/antagonistas & inibidores , Renina/biossíntese , Renina/genética , Sistema Renina-Angiotensina/fisiologia
7.
Appl Microbiol Biotechnol ; 91(4): 1061-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21614503

RESUMO

The highly thermostable esterase from the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 (PestE) shows high enantioselectivity (E > 100) in the kinetic resolution of racemic chiral carboxylic acids, but little selectivity towards acetates of tertiary alcohols (E = 2-4). To explain these unique properties, its crystal structure has been determined at 2.0 Å resolution. The enzyme is a member of the hormone-sensitive lipase group (group H) of the esterase/lipase superfamily on the basis of the amino acid sequence identity. The PestE structure shows a canonical α/ß-hydrolase fold as core domain with a cap structure at the C-terminal end of the ß-sheet. A tetramer in the crystal packing is formed of two dimers; the dimeric form is observed in solution. Conserved dimers and even tetramers are found in other group H proteins. The amino acid residues Ser157, His284, and Asp254 form the catalytic triad, which is typically found in α/ß-hydrolases. The oxyanion hole is composed of Gly85 and Gly86 within the conserved sequence motif HGGG(M,F,W) (amino acid residues 83-87) and Ala158. With the elucidated structure, experimental results about enantioselectivity towards the two model substrate classes (as exemplified for 3-phenylbutanoic acid ethyl ester and 1,1,1-trifluoro-2-phenylbut-3-yn-2-yl acetate) could be explained by molecular modeling. For both enantiomers of the tertiary alcohol, orientations in two binding pockets were obtained without significant energy differences corresponding to the observed low enantioselectivity due to missing steric repulsions. In contrast, for the carboxylic acid ester, two different orientations with significant energy differences for each enantiomer were found matching the high E values.


Assuntos
Esterases/química , Esterases/metabolismo , Pyrobaculum/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Pyrobaculum/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA