Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
River Res Appl ; 33(10): 1539-1552, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29527135

RESUMO

Oxygen demand in river substrates providing important habitats for the early life stages of aquatic ecology, including lithophilous fish, can arise due to the oxidation of sediment-associated organic matter. Oxygen depletion associated with this component of river biogeochemical cycling, will, in part, depend on the sources of such material. A reconnaissance survey was therefore undertaken to assess the relative contributions from bed sediment-associated organic matter sources potentially impacting on the River Axe Special Area of Conservation (SAC), in SW England. Source fingerprinting, including Monte Carlo uncertainty analysis, suggested that the relative frequency-weighted average median source contributions ranged between 19% (uncertainty range 0-82%) and 64% (uncertainty range 0-99%) for farmyard manures or slurries, 4% (uncertainty range 0-49%) and 35% (uncertainty range 0-100%) for damaged road verges, 2% (uncertainty range 0-100%) and 68% (uncertainty range 0-100%) for decaying instream vegetation, and 2% (full uncertainty range 0-15%) and 6% (uncertainty range 0-48%) for human septic waste. A reconnaissance survey of sediment oxygen demand (SOD) along the channel designated as a SAC yielded a mean SOD5 of 4 mg O2 g-1 dry sediment and a corresponding SOD20 of 7 mg O2 g-1 dry sediment, compared with respective ranges of 1-15 and 2-30 mg O2 g-1 dry sediment, measured by the authors for a range of river types across the UK. The findings of the reconnaissance survey were used in an agency (SW region) catchment appraisal exercise for informing targeted management to help protect the SAC.

2.
Sci Total Environ ; 547: 366-381, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26789373

RESUMO

Excessive sediment pressure on aquatic habitats is of global concern. A unique dataset, comprising instantaneous measurements of deposited fine sediment in 230 agricultural streams across England and Wales, was analysed in relation to 20 potential explanatory catchment and channel variables. The most effective explanatory variable for the amount of deposited sediment was found to be stream power, calculated for bankfull flow and used to index the capacity of the stream to transport sediment. Both stream power and velocity category were highly significant (p ≪ 0.001), explaining some 57% variation in total fine sediment mass. Modelled sediment pressure, predominantly from agriculture, was marginally significant (p<0.05) and explained a further 1% variation. The relationship was slightly stronger for erosional zones, providing 62% explanation overall. In the case of the deposited surface drape, stream power was again found to be the most effective explanatory variable (p<0.001) but velocity category, baseflow index and modelled sediment pressure were all significant (p<0.01); each provided an additional 2% explanation to an overall 50%. It is suggested that, in general, the study sites were transport-limited and the majority of stream beds were saturated by fine sediment. For sites below saturation, the upper envelope of measured fine sediment mass increased with modelled sediment pressure. The practical implications of these findings are that (i) targets for fine sediment loads need to take into account the ability of streams to transport/retain fine sediment, and (ii) where agricultural mitigation measures are implemented to reduce delivery of sediment, river management to mobilise/remove fines may also be needed in order to effect an improvement in ecological status in cases where streams are already saturated with fines and unlikely to self-cleanse.

3.
Sci Total Environ ; 541: 957-968, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26473698

RESUMO

Fine sediments are known to be an important cause of increased mortality in benthic spawning fish. To date, most of the research has focussed on the relationship between embryo mortality and the quantity of fine sediment accumulated in the egg pocket. However, recent evidence suggests a) that the source of fine sediment might also be important, and b) that fitness of surviving embryos post-hatch might also be impacted by the accumulation of fine sediments. In this paper, we report an experiment designed to simulate the incubation environment of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). During the experiment, the incubating embryos were exposed to different quantities of fine (<63 µm) sediment derived from four different sources; agricultural topsoils, damaged road verges, eroding river channel banks and tertiary level treated sewage. Results showed that mass and source are independently important for determining the mortality and fitness of alevin. Differences between species were observed, such that brown trout are less sensitive to mass and source of accumulated sediment. We demonstrate for the first time that sediment source is an additional control on the impact of fine sediment, and that this is primarily controlled by the organic matter content and oxygen consumption of the catchment source material.


Assuntos
Sedimentos Geológicos/análise , Salmo salar/crescimento & desenvolvimento , Truta/crescimento & desenvolvimento , Poluentes da Água/análise , Agricultura , Animais , Embrião não Mamífero , Monitoramento Ambiental , Rios
4.
Sci Total Environ ; 456-457: 181-95, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23602971

RESUMO

The ingress of particulate material into freshwater spawning substrates is thought to be contributing to the declining success of salmonids reported over recent years for many rivers. Accordingly, the need for reliable information on the key sources of the sediment problem has progressed up the management agenda. Whilst previous work has focussed on apportioning the sources of minerogenic fine sediment degrading spawning habitats, there remains a need to develop procedures for generating corresponding information for the potentially harmful sediment-bound organic matter that represents an overlooked component of interstitial sediment. A source tracing procedure based on composite signatures combining bulk stable (13)C and (15)N isotope values with organic molecular structures detected using near infrared (NIR) reflectance spectroscopy was therefore used to assess the primary sources of sediment-bound organic matter sampled from artificial spawning redds. Composite signatures were selected using a combination of the Kruskal-Wallis H-test, principal component analysis and GA-driven discriminant function analysis. Interstitial sediment samples were collected using time-integrating basket traps which were inserted at the start of the salmonid spawning season and extracted in conjunction with critical phases of fish development (eyeing, hatch, emergence, late spawning). Over the duration of these four basket extractions, the overall relative frequency-weighted average median (±95% confidence limits) source contributions to the interstitial sediment-bound organic matter were estimated to be in the order: instream decaying vegetation (39±<1%; full range 0-77%); damaged road verges (28±<1%; full range 0-77%); septic tanks (22±<1%; full range 0-50%), and; farm yard manures/slurries (11±<1%; full range 0-61%). The reported procedure provides a promising basis for understanding the key sources of interstitial sediment-bound organic matter and can be applied alongside apportionment for the minerogenic component of fine-grained sediment ingressing the benthos. The findings suggest that human septic waste contributes to the interstitial fines ingressing salmonid spawning habitat in the study area.


Assuntos
Sedimentos Geológicos/química , Substâncias Húmicas/análise , Reprodução , Rios/química , Salmonidae/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Animais , Isótopos de Carbono , Análise Discriminante , Inglaterra , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Isótopos de Nitrogênio , Análise de Componente Principal , Reprodução/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Propriedades de Superfície
5.
Sci Total Environ ; 344(1-3): 241-58, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15893806

RESUMO

This paper draws on results from a recent research programme on the impact of fine sediment transport through catchments to present a case for the development of new approaches to improving the quality of salmonid spawning and incubation habitats. To aid the development of these programmes, this paper summarises the mechanisms by which fine sediment accumulation influences the availability of oxygen (O2) to incubating salmon embryos. The results of the investigation indicate that incubation success is inhibited by: (i) the impact of fine sediment accumulation on gravel permeability and, subsequently, the rate of passage of oxygenated water through the incubation environment; (ii) reduced intragravel O2 concentrations that occur when O2 consuming material infiltrates spawning and incubation gravels; and (iii) the impact of fine particles (clay) on the exchange of O2 across the egg membrane. It is concluded that current granular measures of spawning and incubation habitat quality do not satisfactorily describe the complexity of factors influencing incubation success. Furthermore, an assessment of the trends in fine sediment infiltration indicates that only a small proportion of the total suspended sediment load infiltrates spawning and incubation gravels. This casts doubt over the ability of current catchment-based land use management strategies to adequately reduce fine sediment inputs.


Assuntos
Monitoramento Ambiental , Água Doce/química , Sedimentos Geológicos/química , Salmão/crescimento & desenvolvimento , Poluição da Água/análise , Animais , Oxigênio/análise , Tamanho da Partícula , Dinâmica Populacional , Reino Unido
6.
Sci Total Environ ; 310(1-3): 17-23, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12812727

RESUMO

Rivers integrate the impacts of change in atmospheric and terrestrial systems; they then deliver these to the coast. En route geomorphological processes create dynamic and diverse habitats, both in-stream and in riparian/floodplain ecotones. The dynamics of channel change conflict with human resource development, the outcome is that many river and riparian environments have been significantly modified, complicating the interpretation of change. Collection of geomorphological data on both form and process has to date been overwhelmingly an academic pursuit; standard measurement networks and long-term monitoring have, as a result been largely absent-as in the Environmental Change Network (ECN), despite the emerging requirements of legislation such as the EU Water Framework Directive. In this paper, we utilise a unique set of repeat channel surveys and long-term bed-load sediment yields to provide guidance on both definitions of change and those variables and survey techniques which might form the basis, in future, of improved national-scale monitoring. The Environment Agency's River Habitat Surveys suggest the basis for channel typologies that could structure a sampling framework and rationalise the variables to be monitored. We also point to the value of more detailed geomorphological procedures in use at the catchment/project scale-Catchment Baseline Surveys and Fluvial Audits-as a standardised basis for monitoring the detail of change in the fluvial sediment system. A perfect opportunity to lay foundations for such monitoring activity has been provided in England and Wales by the winter floods of 2000/2001.


Assuntos
Árvores , Abastecimento de Água , Coleta de Dados , Meio Ambiente , Monitoramento Ambiental , Sedimentos Geológicos , Fenômenos Geológicos , Geologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA