Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Langmuir ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012085

RESUMO

The conversion of CO2 to hydrocarbons using catalysts is a promising route to utilize CO2 and produce more valuable chemicals in a sustainable manner. Recent studies have shown that iron-based catalysts perform well for the hydrogenation of CO2. While the hydrogenation reaction mechanism in the gas phase is straightforward, when catalyzed by iron it has been demonstrated to involve various chemical transformations, and the selectivity and conversion are strongly dependent on the particle size. To further investigate the dependence of the reactivity of iron catalysts on cluster size, we performed reactive molecular dynamics simulations using the ReaxFF force field (ReaxFF-MD) for iron nanoclusters of various sizes in a CO2 and H2-rich environment. We demonstrated that the homogeneous hydrogenation of CO2 was correctly described by this ReaxFF model. The dissociation mechanism of CO2 on the Fe4, Fe16 clusters, and the bcc(100) Fe slab agrees with previous DFT results. The ReaxFF-MD simulations suggest a strong dependence of reactivity on the cluster size, with the Fe4 cluster having the highest reactivity. We show that ReaxFF-MD provides a route to understand reaction mechanisms in these nonequilibrium reactive processes where fast processes and local minima are important.

2.
J Am Chem Soc ; 146(20): 13949-13961, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739624

RESUMO

Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.

3.
J Chem Theory Comput ; 20(2): 651-664, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211325

RESUMO

We describe a method for modeling constant-potential charges in heteroatomic electrodes, keeping pace with the increasing complexity of electrode composition and nanostructure in electrochemical research. The proposed "heteroatomic constant potential method" (HCPM) uses minimal added parameters to handle differing electronegativities and chemical hardnesses of different elements, which we fit to density functional theory (DFT) partial charge predictions in this paper by using derivative-free optimization. To demonstrate the model, we performed molecular dynamics simulations using both HCPM and conventional constant potential method (CPM) for MXene electrodes with Li-TFSI/AN (lithium bis(trifluoromethane sulfonyl)imide/acetonitrile)-based solvent-in-salt electrolytes. Although the two methods show similar accumulated charge storage on the electrodes, the results indicated that HCPM provides a more reliable depiction of electrode atom charge distribution and charge response compared with CPM, accompanied by increased cationic attraction to the MXene surface. These results highlight the influence of elemental composition on electrode performance, and the flexibility of our HCPM opens up new avenues for studying the performance of diverse heteroatomic electrodes including other types of MXenes, two-dimensional materials, metal-organic frameworks (MOFs), and doped carbonaceous electrodes.

4.
Phys Chem Chem Phys ; 25(28): 19106-19115, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37428001

RESUMO

Diglyme co-intercalation with sodium ion (Na+) into graphite can enable the use of graphite as a potential anode for sodium-ion batteries (NIBs). However, the presence of diglyme molecules in Na+ intercalated graphite limits Na+ storage capacity and increases volume changes. In this work, the effect of functionalising diglyme molecules with fluoro and hydroxy groups on Na+ storage properties in graphite were computationally studied. It was found that the functionalisation can significantly alter the binding between sodium and the solvent ligand as well as between the sodium-solvent complex and the graphite. The hydroxy-functionalised diglyme exhibits the strongest binding to the graphite of the other functionalised diglyme compounds considered. The calculations also reveal that the graphene layer affects the electron distribution on the diglyme molecule and Na, so the diglyme complexed Na binds more strongly to the graphene layer than the Na alone. We also propose a mechanism for the early stages of the intercalation mechanism that involves a reorientation of the sodium-diglyme complex and suggest how the solvent can be designed to optimise the co-intercalation process.

5.
J Chem Theory Comput ; 19(10): 2758-2768, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37057988

RESUMO

Constant potential method molecular dynamics simulation (CPM MD) enables the accurate modeling of atomistic electrode charges when studying the electrode-electrolyte interface at the nanoscale. Here, we extend the theoretical framework of CPM MD to the case in which the total charge of each conductive electrode is controlled, instead of their potential difference. We show that the resulting thermodynamic ensemble is distinct from that sampled with a fixed potential difference but they are rigorously related as conjugate ensembles. This theoretical correspondence, which we demonstrate using simulations of an ionic liquid supercapacitor, underpins the success of recent studies with fixed total charges on the electrodes. We show that equilibration is usefully sped up in this ensemble and outline some potential applications of these simulations in the future.

6.
ACS Nano ; 17(9): 8483-8498, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097065

RESUMO

Cancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization. The conjugation of the fluoropolymers to ZIF-8 nanoparticles not only allows sensitive in vivo visualization of the nanoparticles by 19F MRI but also significantly prolongs their circulation time in the bloodstream, resulting in improved delivery efficiency to tumor tissue. The ZIF-8-fluoropolymer nanoparticles can respond to the acidic tumor microenvironment, leading to progressive degradation of the nanoparticles and release of zinc ions as well as encapsulated anticancer drugs. The zinc ions released from the ZIF-8 can further coordinate to the fluoropolymers to switch the hydrophilicity and reverse the surface charge of the nanoparticles. This transition in hydrophilicity and surface charge of the polymeric coating can reduce the "stealth-like" nature of the agent and enhance specific uptake by cancer cells. Hence, these hybrid nanoparticles represent intelligent theranostics with highly sensitive imaging capability, significantly prolonged blood circulation time, greatly improved accumulation within the tumor tissue, and enhanced anticancer therapeutic efficiency.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Polímeros de Fluorcarboneto/uso terapêutico , Estruturas Metalorgânicas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/uso terapêutico , Imageamento por Ressonância Magnética , Interações Hidrofóbicas e Hidrofílicas , Zinco/uso terapêutico , Íons , Microambiente Tumoral
7.
Nat Mater ; 21(9): 1057-1065, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788569

RESUMO

Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm-2 and 1.0 mAh cm-2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm-2).

8.
J Chem Theory Comput ; 18(6): 3357-3363, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35657378

RESUMO

Widely applicable, modified Green-Kubo expressions for the local diffusion coefficient (Dl) are obtained using linear response theory. In contrast to past definitions in use, these expressions are statistical mechanical results. Molecular simulations of systems with anisotropic diffusion and an inhomogeneous density profile confirm the validity of the results. Diffusion coefficients determined from different expressions in terms of currents and velocity correlations agree in the limit of large systems. Furthermore, they apply to arbitrarily small local regions, making them readily applicable to nanoscale and inhomogeneous systems where knowledge of Dl is important.


Assuntos
Física , Anisotropia , Difusão
9.
J Chem Phys ; 156(18): 184101, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568564

RESUMO

Molecular dynamics (MD) simulations of complex electrochemical systems, such as ionic liquid supercapacitors, are increasingly including the constant potential method (CPM) to model conductive electrodes at a specified potential difference, but the inclusion of CPM can be computationally expensive. We demonstrate the computational savings available in CPM MD simulations of ionic liquid supercapacitors when the usual non-periodic slab geometry is replaced with fully periodic boundary conditions. We show how a doubled cell approach, previously used in non-CPM MD simulations of charged interfaces, can be used to enable fully periodic CPM MD simulations. Using either a doubled cell approach or a finite field approach previously reported by others, fully periodic CPM MD simulations produce comparable results to the traditional slab geometry simulations with a nearly double speedup in computational time. Indeed, these savings can offset the additional cost of the CPM algorithm, resulting in periodic CPM MD simulations that are computationally competitive with the non-periodic, fixed charge equivalent simulations for the ionic liquid supercapacitors studied here.

10.
Phys Chem Chem Phys ; 24(11): 6383-6392, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35262116

RESUMO

Standard textbook derivations of the equilibrium distribution function rely on assumptions that may not satisfy all readers. Here, we present a straightforward approach to derive the equilibrium distribution function from the microscopic dynamics, and review how it can be used to obtain the expected expressions. In molecular dynamics simulations the equations of motion are often modified to simulate different ensembles or phenomena. We show that in some cases these equations will sample an equilibrium ensemble whereas in other cases they will not. For example, we find that for charged particles driven by a field, an equilibrium distribution is only possible when the system is confined. Furthermore, the approach correctly predicts that neither SLLOD shear flow dynamics nor constant temperature dynamics with a Berendsen thermostat sample any time-independent phase space distributions.


Assuntos
Simulação de Dinâmica Molecular , Movimento (Física) , Temperatura
11.
Angew Chem Int Ed Engl ; 61(25): e202203646, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35332641

RESUMO

The development of cost-effective and long-life rechargeable aluminium ion batteries (AIBs) shows promising prospects for sustainable energy storage applications. Here, we report a heteroatom π-conjugated polymer featuring synergistic C=O and C=N active centres as a new cathode material in AIBs using a low-cost AlCl3 /urea electrolyte. Density functional theory (DFT) calculations reveal the fused C=N sites in the polymer not only benefit good π-conjugation but also enhance the redox reactivity of C=O sites, which enables the polymer to accommodate four AlCl2 (urea)2 + per repeating unit. By integrating the polymer with carbon nanotubes, the hybrid cathode exhibits a high discharge capacity and a long cycle life (295 mAh g-1 at 0.1 A g-1 and 85 mAh g-1 at 1 A g-1 over 4000 cycles). The achieved specific energy density of 413 Wh kg-1 outperforms most Al-organic batteries reported to date. The synergistic redox-active sites strategy sheds light on the rational design of organic electrode materials.

12.
ACS Nano ; 15(12): 20067-20078, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34866390

RESUMO

Balance between self-association of structural units and self-repulsion from crowding-induced steric hindrance accounts for the supramolecular assembly of the amphiphilic entities to form ordered structures, and solvation provides a toolbox to conveniently modulate the assemblies through differential interactions to various structural units. Here we report solvation-modulated supramolecular chiral assembly in aqueous solutions of amphiphilic dendronized tetraphenylethylenes (TPEs) with three-folded dendritic oligoethylene glycols (OEGs) through dipeptide Ala-Gly linkage. These dendronized amphiphiles can form supramolecular spheres with enhanced supramolecular chirality, which is tunable and dependent on solvation. These nanosized spherical aggregates exhibit thermoresponsive behavior, and their cloud point temperatures are dependent on mixed solvent of water and THF. The phase transition temperatures increase with water fractions due to water-driven shifting of OEG moieties from interiors of the aggregates to their peripheries. Furthermore, the thermally induced dehydration and collapse of OEG moieties mediate the reversible aggregation and deaggregation between the spheres, imparting tunable aggregation-induced fluorescent emission (AIE) and supramolecular chirality. Both experimental results and molecular dynamic simulations have highlighted that reversible chirality transformations of the amphiphilic dendronized assemblies mediated by solvation through change solvent quality or thermally dehydration are dependent on the balance between interactions of OEG dendrons with TPE moieties and with the solvent molecules.


Assuntos
Corantes , Solventes , Temperatura
13.
Chem Commun (Camb) ; 57(95): 12780-12783, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34781324

RESUMO

Transformation of supramolecular chiral assemblies into covalent polymers integrates characteristics of supramolecular chemistry together with covalent entities, leading to fabrication of covalent chiral materials through versatile supramolecular chiral assemblies. Here, we report supramolecular assembly of an amphiphilic dendronized 10,12-pentacosadiynoic amide (PCDA) in aqueous solutions to form twisted ribbons, which were transferred into covalent dendronized polydiacetylenes (PDAs) via photopolymerization. These supramolecular dendronized PCDA and the corresponding covalent dendronized PDAs showed unprecedent thermoresponsive properties. The thermally-induced dehydration and aggregations tuned reversibly their chiralities, which can be visually inspected through colour changes.

14.
Phys Chem Chem Phys ; 23(4): 3063-3070, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33491022

RESUMO

Expanded graphite (EG) has been shown to be able to store a significant amount of sodium ions. Understanding the alkali metal ion storage in EG is of importance for improving EG electrode performance. In this work, the effect of interlayer distance of pure EG on sodium ion storage was investigated using the density functional theory calculation method. EG structure models with interlayer distances ranging from 3.4 Å to 10.0 Å were simulated. It was found that EG can store a fairly large amount of sodium ions through an intercalation mechanism without any contributions from the co-intercalation mechanism or adsorption mechanism if the interlayer distance is larger than 4.4 Å and smaller than 6.0 Å. It was also found that an interlayer distance of 6.0 Å gives strong binding energy of sodium ions with EG forming thermodynamically stable sodium-graphite intercalation compound (Na-GIC). However, when the interlayer distance becomes larger than 6.0 Å, the binding energy between sodium ions and EG becomes weaker. Computational results have also shown that the enthalpy of formation of the Na-GIC of EG is energetically more favourable when the interlayer distance is increased. An optimal d-spacing of EG for sodium ion storage was identified in this work. These findings provide atomistic insights into sodium ion storage in EG, providing guidelines for the design of graphite-based anode materials for sodium-ion batteries.

15.
Nanomaterials (Basel) ; 10(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139670

RESUMO

In this work, we investigate the effect of the cation structure on the structure and dynamics of the electrode-electrolyte interface using molecular dynamics simulations. A constant potential method is used to capture the behaviour of 1-ethyl-3-methylimidazolium bis (trifluoromethane)sulfonimide ([C2mim][NTf2]) and butyltrimethylammonium bis(trifluoromethane) sulfonimide ([N4,1,1,1][NTf2]) ionic liquids at varying potential differences applied across the supercapacitor. We find that the details of the structure in the electric double layer and the dynamics differ significantly, yet the charge profile and capacitance do not vary greatly. For the systems considered, charging results in the rearrangement and reorientation of ions within ∼1 nm of the electrode rather than the diffusion of ions to/from the bulk region. This occurs on timescales of O(10 ns) for the ionic liquids considered, and depends on the viscosity of the fluid.

16.
Adv Mater ; 32(18): e1908041, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32141672

RESUMO

Advances and progress in computational research that aims to understand and improve solid-state electrolytes (SSEs) are outlined. One of the main challenges in the development of all-solid-state batteries is the design of new SSEs with high ion diffusivity that maintain chemical and phase stability and thereby provide a wide electrochemical stability window. Solving this problem requires a deep understanding of the diffusion mechanism and properties of the SSEs. A second important challenge is the development of an understanding of the interface between the SSE and the electrode. The role of molecular simulations and modeling in dealing with these challenges is discussed, with reference to examples in the literature. The methods used and issues considered in recent years are highlighted. Finally, a brief outlook about the future of modeling in studying solid-state battery technology is presented.

17.
Angew Chem Int Ed Engl ; 59(12): 4729-4735, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31951063

RESUMO

The conjugation of hydrophilic low-fouling polymers to therapeutic molecules and particles is an effective approach to improving their aqueous stability, solubility, and pharmacokinetics. Recent concerns over the immunogenicity of poly(ethylene glycol) has highlighted the importance of identifying alternative low fouling polymers. Now, a new class of synthetic water-soluble homo-fluoropolymers are reported with a sulfoxide side-chain structure. The incorporation of fluorine enables direct imaging of the homopolymer by 19 F MRI, negating the need for additional synthetic steps to attach an imaging moiety. These self-reporting fluoropolymers show outstanding imaging sensitivity and remarkable hydrophilicity, and as such are a new class of low-fouling polymer for bioconjugation and in vivo tracking.


Assuntos
Polietilenoglicóis/síntese química , Sulfóxidos/química , Flúor/química , Halogenação , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Polietilenoglicóis/química , Solubilidade , Água/química
18.
Chem Sci ; 11(35): 9584-9592, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34094224

RESUMO

Multiple heteroatom-doped carbons with 3D ordered macro/meso-microporous structures have not been realized by simple carbonization of metal-organic frameworks (MOFs). Herein, ordered macroporous phosphorus- and nitrogen-doped carbon (M-PNC) is prepared successfully by carbonization of double-solvent-induced MOF/polystyrene sphere (PS) precursors accompanied with spontaneous removal of the PS template, followed by post-doping. M-PNC shows a high specific surface area of 837 m2 g-1, nitrogen doping of 3.17 at%, and phosphorus doping of 1.12 at%. Thanks to the hierarchical structure, high specific surface area, and multiple heteroatom-doping, M-PNC exhibits unusual catalytic activity as an electrocatalyst for the oxygen reduction reaction. Computational calculation reveals that the P[double bond, length as m-dash]O group helps stabilize the adsorption of intermediates, and the position of P[double bond, length as m-dash]O relative to graphitic N significantly improves the activity of the adjacent carbons for electrocatalysis.

19.
J Chem Inf Model ; 59(5): 2242-2247, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30912939

RESUMO

Metal heteroatoms dispersed in nitrogen-doped graphene display promising catalytic activity for fuel cell reactions such as the hydrogen evolution reaction (HER). Here we explore the effects of the dopant concentration on the synergistic catalytic behavior of a paired metal atom active site comprising Co and Pt atoms that have been shown to be particularly active catalysts in these materials. The metals are coordinated to six atoms in a vacancy of N-doped graphene. We find that the HER activity is enhanced with increasing N concentration, where the free energy of hydrogen atom adsorption ranges from 0.23 to -0.42 eV as the doping changes from a single N atom doped in the pore to fully doped coordination sites. The results indicate that the effect of N is to make the metal atoms more active toward H adsorption, presenting a means through which transition metals can be modified to make more effective and sustainable fuel cell catalysts.


Assuntos
Cobalto/química , Hidrogênio/química , Platina/química , Adsorção , Catálise , Fenômenos Magnéticos , Propriedades de Superfície
20.
J Am Chem Soc ; 140(34): 10757-10763, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30081632

RESUMO

Platinum (Pt) is the state-of-the-art catalyst for oxygen reduction reaction (ORR), but its high cost and scarcity limit its large-scale use. However, if the usage of Pt reduces to a sufficiently low level, this critical barrier may be overcome. Atomically dispersed metal catalysts with high activity and high atom efficiency have the possibility to achieve this goal. Herein, we report a locally distributed atomic Pt-Co nitrogen-carbon-based catalyst (denoted as A-CoPt-NC) with high activity and robust durability for ORR (267 times higher than commercial Pt/C in mass activity). The A-CoPt-NC shows a high selectivity for the 4e- pathway in ORR, differing from the reported 2e- pathway characteristic of atomic Pt catalysts. Density functional theory calculations suggest that this high activity originates from the synergistic effect of atomic Pt-Co located on a defected C/N graphene surface. The mechanism is thought to arise from asymmetry in the electron distribution around the Pt/Co metal centers, as well as the metal atoms' coordination with local environments on the carbon surface. This coordination results from N8V4 vacancies (where N8 represents the number of nitrogen atoms and V4 indicates the number of vacant carbon atoms) within the carbon shell, which enhances the oxygen reduction reaction via the so-called synergistic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA