Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746092

RESUMO

Many inherited retinal diseases target photoreceptors, which transduce light into a neural signal that is processed by the downstream visual system. As photoreceptors degenerate, physiological and morphological changes to retinal synapses and circuitry reduce sensitivity and increase noise, degrading visual signal fidelity. Here, we pharmacologically targeted the first synapse in the retina in an effort to reduce circuit noise without sacrificing visual sensitivity. We tested a strategy to partially replace the neurotransmitter lost when photoreceptors die with an agonist of receptors that ON bipolars cells use to detect glutamate released from photoreceptors. In rd10 mice, which express a photoreceptor mutation that causes retinitis pigmentosa (RP), we found that a low dose of the mGluR6 agonist l-2-amino-4-phosphonobutyric acid (L-AP4) reduced pathological noise induced by photoreceptor degeneration. After making in vivo electroretinogram recordings in rd10 mice to characterize the developmental time course of visual signal degeneration, we examined effects of L-AP4 on sensitivity and circuit noise by recording in vitro light-evoked responses from individual retinal ganglion cells (RGCs). L-AP4 decreased circuit noise evident in RGC recordings without significantly reducing response amplitudes, an effect that persisted over the entire time course of rod photoreceptor degeneration. Subsequent in vitro recordings from rod bipolar cells (RBCs) showed that RBCs are more depolarized in rd10 retinas, likely contributing to downstream circuit noise and reduced synaptic gain, both of which appear to be ameliorated by hyperpolarizing RBCs with L-AP4. These beneficial effects may reduce pathological circuit remodeling and preserve the efficacy of therapies designed to restore vision.

2.
Curr Biol ; 32(2): 315-328.e4, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34822767

RESUMO

The morphology of retinal neurons strongly influences their physiological function. Ganglion cell (GC) dendrites ramify in distinct strata of the inner plexiform layer (IPL) so that GCs responding to light increments (ON) or decrements (OFF) receive appropriate excitatory inputs. This vertical stratification prescribes response polarity and ensures consistent connectivity between cell types, whereas the lateral extent of GC dendritic arbors typically dictates receptive field (RF) size. Here, we identify circuitry in mouse retina that contradicts these conventions. AII amacrine cells are interneurons understood to mediate "crossover" inhibition by relaying excitatory input from the ON layer to inhibitory outputs in the OFF layer. Ultrastructural and physiological analyses show, however, that some AIIs deliver powerful inhibition to OFF GC somas and proximal dendrites in the ON layer, rendering the inhibitory RFs of these GCs smaller than their dendritic arbors. This OFF pathway, avoiding entirely the OFF region of the IPL, challenges several tenets of retinal circuitry. These results also indicate that subcellular synaptic organization can vary within a single population of neurons according to their proximity to potential postsynaptic targets.


Assuntos
Retina , Sinapses , Células Amácrinas/fisiologia , Animais , Dendritos/fisiologia , Interneurônios/fisiologia , Mamíferos , Camundongos , Retina/fisiologia , Sinapses/fisiologia
3.
Biol Open ; 8(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31362947

RESUMO

Serial-section electron microscopy such as FIB-SEM (focused ion beam scanning electron microscopy) has become an important tool for neuroscientists to trace the trajectories and global architecture of neural circuits in the brain, as well as to visualize the 3D ultrastructure of cellular organelles in neurons. In this study, we examined 3D features of mitochondria in electron microscope images generated from serial sections of four regions of mouse brains: nucleus accumbens (NA), hippocampal CA1, somatosensory cortex and dorsal cochlear nucleus (DCN). We compared mitochondria in the presynaptic terminals to those in the postsynaptic/dendritic compartments, and we focused on the shape and size of mitochondria. A common feature of mitochondria among the four brain regions is that presynaptic mitochondria generally are small and short, and most of them do not extend beyond presynaptic terminals. In contrast, the majority of postsynaptic/dendritic mitochondria are large and many of them spread through significant portions of the dendrites. Comparing among the brain areas, the cerebral cortex and DCN have even larger postsynaptic/dendritic mitochondria than the NA and CA1. Our analysis reveals that mitochondria in neurons are differentially sized and arranged according to their subcellular locations, suggesting a spatial organizing principle of mitochondria at the synapse.

4.
Front Physiol ; 7: 186, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252659

RESUMO

P2X purinergic receptors are plasma membrane ATP-dependent cation channels that are broadly distributed in the mammalian tissues. P2RX2 is a modulator of auditory sensory hair cell mechanotransduction and plays an important role in hair cell tolerance to noise. In this study, we demonstrate for the first time in vitro and in cochlear neuroepithelium, that P2RX2 possesses the ATPase activity. We observed that the P2RX2 V60L human deafness mutation alters its ability to bind ATP, while the G353R has no effect on ATP binding or hydrolysis. A non-hydrolysable ATP assay using HEK293 cells suggests that ATP hydrolysis plays a significant role in the opening and gating of the P2RX2 ion channel. Moreover, the results of structural modeling of the molecule was in agreement with our experimental observations. These novel findings suggest the intrinsic ATPase activity of P2RX2 and provide molecular insights into the channel opening.

5.
Cell Rep ; 12(10): 1606-17, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26321635

RESUMO

Mechanosensitive ion channels at stereocilia tips mediate mechanoelectrical transduction (MET) in inner ear sensory hair cells. Transmembrane channel-like 1 and 2 (TMC1 and TMC2) are essential for MET and are hypothesized to be components of the MET complex, but evidence for their predicted spatiotemporal localization in stereocilia is lacking. Here, we determine the stereocilia localization of the TMC proteins in mice expressing TMC1-mCherry and TMC2-AcGFP. Functionality of the tagged proteins was verified by transgenic rescue of MET currents and hearing in Tmc1(Δ/Δ);Tmc2(Δ/Δ) mice. TMC1-mCherry and TMC2-AcGFP localize along the length of immature stereocilia. However, as hair cells develop, the two proteins localize predominantly to stereocilia tips. Both TMCs are absent from the tips of the tallest stereocilia, where MET activity is not detectable. This distribution was confirmed for the endogenous proteins by immunofluorescence. These data are consistent with TMC1 and TMC2 being components of the stereocilia MET channel complex.


Assuntos
Cílios/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Proteínas de Membrana/metabolismo , Animais , Cílios/ultraestrutura , Feminino , Expressão Gênica , Células Ciliadas Auditivas Internas/ultraestrutura , Masculino , Mecanotransdução Celular , Proteínas de Membrana/genética , Camundongos Transgênicos , Transporte Proteico
6.
Artigo em Inglês | MEDLINE | ID: mdl-25071459

RESUMO

Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.


Assuntos
Nervo Coclear/fisiologia , Núcleo Coclear/citologia , Retroalimentação Fisiológica/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Núcleo Coclear/fisiologia , Estimulação Elétrica , Feminino , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/classificação , Neurotransmissores/farmacologia , Sinapses/efeitos dos fármacos
7.
J Neurosci ; 31(44): 15807-17, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22049424

RESUMO

Neurons in many brain regions release endocannabinoids from their dendrites that act as retrograde signals to transiently suppress neurotransmitter release from presynaptic terminals. Little is known, however, about the physiological mechanisms of short-term endocannabinoid-mediated plasticity under physiological conditions. Here we investigate calcium-dependent endocannabinoid release from cartwheel cells (CWCs) of the mouse dorsal cochlear nucleus (DCN) in the auditory brainstem that provide feedforward inhibition onto DCN principal neurons. We report that sustained action potential firing by CWCs evokes endocannabinoid release in response to submicromolar elevation of dendritic calcium that transiently suppresses their parallel fiber (PF) inputs by >70%. Basal spontaneous CWC firing rates are insufficient to evoke tonic suppression of PF synapses. However, elevating CWC firing rates by stimulating PFs triggers the release of endocannabinoids and heterosynaptic suppression of PF inputs. Spike-evoked suppression by endocannabinoids selectively suppresses excitatory synapses, but glycinergic/GABAergic inputs onto CWCs are not affected. Our findings demonstrate a mechanism of transient plasticity mediated by endocannabinoids that heterosynaptically suppresses subsets of excitatory presynaptic inputs to CWCs that regulates feedforward inhibition of DCN principal neurons and may influence the output of the DCN.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Núcleo Coclear/citologia , Endocanabinoides , Inibição Neural/fisiologia , Neurônios/metabolismo , Período Refratário Eletrofisiológico/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Biofísica , Cálcio/metabolismo , Dendritos/metabolismo , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Endogâmicos ICR , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Pirrolidinonas/farmacologia , Quinoxalinas/farmacologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia , Fatores de Tempo
8.
J Neurosci ; 25(37): 8439-50, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16162926

RESUMO

NMDA receptors are ligand-gated ion channels permeable to calcium and play a critical role in excitatory synaptic transmission, synaptic plasticity, and excitotoxicity. They are heteromeric complexes of NR1 combined with NR2A-D and/or NR3A-B subunits that are activated by glutamate and glycine and whose activity is modulated by allosteric modulators. In this study, patch-clamp recordings from human embryonic kidney 293 cells expressing NR1/NR2 receptors were used to study the molecular mechanism of the endogenous neurosteroid 20-oxo-5beta-pregnan-3alpha-yl sulfate (3alpha5betaS) action at NMDA receptors. 3alpha5betaS was a twofold more potent inhibitor of responses mediated by NR1/NR2C-D receptors than those mediated by NR1/NR2A-B receptors. The structure of the extracellular loop between the third and fourth transmembrane domains of the NR2 subunit was found to be critical for the neurosteroid inhibitory effect. The degree of 3alpha5betaS-induced inhibition of responses to glutamate was voltage independent, with recovery lasting several seconds. In contrast, application of 3alpha5betaS in the absence of agonist had no effect on the subsequent response to glutamate made in the absence of the neurosteroid. A kinetic model was developed to explain the use-dependent action of 3alpha5betaS at NMDA receptors. In accordance with the model, 3alpha5betaS was a less potent inhibitor of NMDA receptor-mediated EPSCs and responses induced by a short application of 1 mm glutamate than of those induced by a long application of glutamate. These results suggest that 3alpha5betaS is a use-dependent but voltage-independent inhibitor of NMDA receptors, with more potent action at tonically than at phasically activated receptors. This may be important in the treatment of excitotoxicity-induced neurodegeneration.


Assuntos
Hipocampo/fisiologia , Pregnanos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Cultivadas , Hipocampo/citologia , Humanos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neocórtex/fisiologia , Técnicas de Patch-Clamp , Ratos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA