Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 128(11): 2096-105, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25908859

RESUMO

Junctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER-plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K(+) channel in the mammalian brain, induces the formation of ER-plasma-membrane junctions. Kv2.1 localizes to dense, cell-surface clusters that contain non-conducting channels, indicating that they have a function that is unrelated to membrane-potential regulation. Accordingly, Kv2.1 clusters function as membrane-trafficking hubs, providing platforms for delivery and retrieval of multiple membrane proteins. Using both total internal reflection fluorescence and electron microscopy we demonstrate that the clustered Kv2.1 plays a direct structural role in the induction of stable ER-plasma-membrane junctions in both transfected HEK 293 cells and cultured hippocampal neurons. Glutamate exposure results in a loss of Kv2.1 clusters in neurons and subsequent retraction of the cER from the plasma membrane. We propose Kv2.1-induced ER-plasma-membrane junctions represent a new macromolecular plasma-membrane complex that is sensitive to excitotoxic insult and functions as a scaffolding site for both membrane trafficking and Ca(2+) signaling.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Canais de Potássio Shab/metabolismo , Cálcio/metabolismo , Linhagem Celular , Ácido Glutâmico/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
2.
Water Res ; 43(11): 2865-73, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19401257

RESUMO

A sampling campaign was carried out for n-chloridazon (n-CLZ) and its degradation product desphenyl-chloridazon (DPC) in the Hesse region (Germany) during the year 2007: a total of 548 environmental samples including groundwater, surface water and wastewater treatment plant (WWTP) effluent were analysed. Furthermore, aerobic degradation of n-CLZ has been studied utilising a fixed bed bioreactor (FBBR). In surface water, n-CLZ was detected at low concentrations (average 0.01+/-0.06mugL(-1); maximum 0.89mugL(-1)) with a seasonal peak, whereas DPC was present throughout the year at much higher concentrations (average 0.72+/-0.81mugL(-1); maximum 7.4mugL(-1)). Higher n-CLZ concentrations were observed in the North compared with South Hesse, which is ascribed to a higher density of agricultural areas. Furthermore, methylated DPC (Me-DPC), another degradation product, was detected in surface water. In the degradation test, n-CLZ was completely converted to DPC at all concentrations tested (Me-DPC was not formed under the test conditions). DPC was resistant to further degradation during the whole experimental period of 98 days. The results obtained suggest persistence and high dispersion of DPC in the aquatic environment.


Assuntos
Herbicidas/química , Herbicidas/metabolismo , Piridazinas/química , Piridazinas/metabolismo , Biodegradação Ambiental , Europa (Continente) , Estrutura Molecular , Rios/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
3.
Environ Sci Technol ; 36(17): 3652-61, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12322734

RESUMO

An overview of methyl tert-butyl ether (MTBE) concentrations in German river water (315 samples) and wastewater (82 samples) is given. In the agglomerated area of Frankfurt/M, several samples of surface water, wastewater, and industrial effluents were analyzed for its MTBE content from 1999 to 2001. MTBE was analyzed by a combination of headspace-solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS). Rhine and Main water concentrations of MTBE in the lower parts of the rivers were approximately 250 ng/L and 200 ng/L, respectively. The concentrations increased from the upper parts of the rivers to its mouths. Water from the Elbe, Neckar, and Weser rivers showed lower MTBE concentrations, and the ether was not detected in the Danube river. Generally, higher MTBE concentrations were detected at urban agglomerations compared to rural areas. Small urban creeks without significant industrial input showed MTBE concentrations of approximately 50 ng/L, and it was hardly detectable in small rural creeks. Higher MTBE concentrations in river water were correlated with increased concentrations of the oxygenate measured in precipitation. Most MTBE concentrations in river water fell in the range of 50-200 ng/L (32%), 10-50 ng/L (28%), and 200-1000 ng/L (26%). MTBE concentrations in German surface water and air are 3-17 times lower compared to Californian data. Wastewater samples from influents of two sewage plants showed MTBE concentrations of approximately 100-300 ng/L, and a loading of 2-37 kg/a was calculated. An eliminated MTBE percentage of roughly 30-35% of MTBE in the plants was estimated. Industrially influenced samples of river water or public wastewater and industrial effluents showed MTBE concentrations of up to 2267 ng/L and 28 microg/L, respectively. This input has not been considered before because only 1.5% of the produced amount of MTBE in Germany is used for industrial processes, but it should not be neglected because MTBE is very persistent in water.


Assuntos
Resíduos Industriais/análise , Éteres Metílicos/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/normas , California , Água Doce/química , Cromatografia Gasosa-Espectrometria de Massas , Alemanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA