Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834618

RESUMO

The stimulus-secretion coupling of the pancreatic beta cell is particularly complex, as it integrates the availability of glucose and other nutrients with the neuronal and hormonal input to generate rates of insulin secretion that are appropriate for the entire organism. It is beyond dispute however, that the cytosolic Ca2+ concentration plays a particularly prominent role in this process, as it not only triggers the fusion of insulin granules with the plasma membrane, but also regulates the metabolism of nutrient secretagogues and affects the function of ion channels and transporters. In order to obtain a better understanding of the interdependence of these processes and, ultimately, of the entire beta cell as a working system, models have been developed based on a set of nonlinear ordinary differential equations, and were tested and parametrized on a limited set of experiments. In the present investigation, we have used a recently published version of the beta cell model to test its ability to describe further measurements from our own experimentation and from the literature. The sensitivity of the parameters is quantified and discussed; furthermore, the possible influence of the measuring technique is taken into account. The model proved to be powerful in correctly describing the depolarization pattern in response to glucose and the reaction of the cytosolic Ca2+ concentration to stepwise increases of the extracellular K+ concentration. Additionally, the membrane potential during a KATP channel block combined with a high extracellular K+ concentration could be reproduced. In some cases, however, a slight change of a single parameter led to an abrupt change in the cellular response, such as the generation of a Ca2+ oscillation with high amplitude and high frequency. This raises the question as to whether the beta cell may be a partially unstable system or whether further developments in modeling are needed to achieve a generally valid description of the stimulus-secretion coupling of the beta cell.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Células Secretoras de Insulina/metabolismo , Sinalização do Cálcio/fisiologia , Potenciais da Membrana , Insulina/metabolismo , Glucose/metabolismo , Cálcio/metabolismo , Ilhotas Pancreáticas/metabolismo
2.
Mol Cell Endocrinol ; 472: 97-106, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208420

RESUMO

The antimalarial agent, mefloquine, inhibits the function of connexin Cx36 gap junctions and hemichannels and has thus become a tool to investigate their physiological relevance in pancreatic islets. In view of earlier reports on a KATP channel-block by mefloquine, the specificity of mefloquine as a pharmacological tool was investigated. Mouse pancreatic islets and single beta cells were used to measure membrane potential, whole cell currents, Ca2+ channel activity, cytosolic Ca2+ concentration ([Ca2+]i) and insulin secretion. Mefloquine was tested in the concentration range of 5-50 µM 25 µM mefloquine was as effective as 500 µM tolbutamide to depolarize the plasma membrane of beta cells, but did not induce action potentials. Rather, it abolished tolbutamide-induced action potentials and the associated increase of [Ca2+]i. In the range of 5-50 µM mefloquine inhibited voltage-dependent Ca2+ currents in primary beta cells as effectively as 1 µM nisoldipine, a specific blocker of L-type Ca2+ channels. The Ca2+ channel opening effect of Bay K8644 was completely antagonized by mefloquine. Likewise, the increase of [Ca2+]i and of insulin secretion stimulated by 40 mM KCl, but not that by 30 mM glucose was antagonized by 50 µM mefloquine. Neither at 5 µM nor at 50 µM did mefloquin stimulate insulin secretion at basal glucose. In conclusion, mefloquine blocks KATP channels and L-type Ca2+ channels in pancreatic beta cells in the range from 5 to 50 µM. Thus it inhibits depolarization-induced insulin secretion, but in the presence of a stimulatory glucose concentration additional effects of mefloquine, possibly on intracellular Ca2+ mobilization, and the metabolic amplification by glucose permit a sustained rate of secretion.


Assuntos
Canais de Cálcio/metabolismo , Conexinas/antagonistas & inibidores , Secreção de Insulina/efeitos dos fármacos , Mefloquina/farmacologia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Conexinas/metabolismo , Di-Hidropiridinas/farmacologia , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Nisoldipino/farmacologia , Cloreto de Potássio/farmacologia , Tolbutamida/farmacologia , Proteína delta-2 de Junções Comunicantes
3.
Metabolism ; 67: 1-13, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28081772

RESUMO

OBJECTIVE: The metabolic amplification of insulin secretion is the sequence of events which enables the secretory response to a fuel secretagogue to exceed the secretory response to a purely depolarizing stimulus. The signals in this pathway are incompletely understood. Here, we have characterized an experimental procedure by which the amplifying response to glucose is reversibly desensitized, while the response to α-ketoisocaproic acid (KIC) is unchanged. MATERIALS/METHODS: Insulin secretion, NAD(P)H- and FAD-autofluorescence, Fura-2 fluorescence and oxygen consumption were measured in perifused NMRI mouse islets. The ATP- and ADP-contents were measured in statically incubated mouse islets. All islets were freshly isolated. RESULTS: While the original observation on the dissociation between glucose- and KIC-amplification was obtained with islets that had been exposed to a high concentration of the sulfonylurea glipizide in the absence of glucose, we now show that in the absence of exogenous fuel a moderate depolarization, irrespective of its mechanism, progressively decreased the amplification in response to both glucose and KIC. However, the amplification in response to glucose declined faster, so a time window exists where glucose was already inefficient, whereas KIC was of unimpaired efficiency. Measurements of adenine nucleotides, NAD(P)H- and FAD-autofluorescence, and oxygen consumption point to a central role of the mitochondrial metabolism in this process. The desensitization could be quickly reversed by increasing oxidative deamination of glutamate and consequently anaplerosis of the citrate cycle. CONCLUSION: Depolarization in the absence of exogenous fuel may be a useful model to identify those signals which are indispensable for the generation of metabolic amplification.


Assuntos
Glucose/farmacologia , Insulina/metabolismo , Cetoácidos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Nucleotídeos de Adenina/metabolismo , Animais , Flavina-Adenina Dinucleotídeo/metabolismo , Glipizida/farmacologia , Hipoglicemiantes/farmacologia , Secreção de Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , NADP/metabolismo , Consumo de Oxigênio , Receptores de Sulfonilureias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA