Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 14(20): 5453-5459, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234904

RESUMO

Cation-uptake has been long researched as an important topic in materials science. Herein we focus on a molecular crystal composed of a charge-neutral polyoxometalate (POM) capsule [MoVI72FeIII30O252(H2O)102(CH3CO2)15]3+ encapsulating a Keggin-type phosphododecamolybdate anion [α-PMoVI12O40]3-. Cation-coupled electron-transfer reaction occurs by treating the molecular crystal in an aqueous solution containing CsCl and ascorbic acid as a reducing reagent. Specifically, multiple Cs+ ions and electrons are captured in crown-ether-like pores {MoVI3FeIII3O6}, which exist on the surface of the POM capsule, and Mo atoms, respectively. The locations of Cs+ ions and electrons are revealed by single-crystal X-ray diffraction and density functional theory studies. Highly selective Cs+ ion uptake is observed from an aqueous solution containing various alkali metal ions. Cs+ ions can be released from the crown-ether-like pores by the addition of aqueous chlorine as an oxidizing reagent. These results show that the POM capsule functions as an unprecedented "redox-active inorganic crown ether", clearly distinguished from the non-redox-active organic counterpart.

2.
Angew Chem Int Ed Engl ; 61(19): e202117839, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35148455

RESUMO

Polyoxometalates (POMs), ranging in size from 1 to 10's of nanometers, resemble building blocks of inorganic materials. Elucidating their complex solubility behavior with alkali-counterions can inform natural and synthetic aqueous processes. In the study of POMs ([Nb24 O72 H9 ]15- , Nb24 ) we discovered an unusual solubility trend (termed anomalous solubility) of alkali-POMs, in which Nb24 is most soluble with the smallest (Li+ ) and largest (Rb/Cs+ ) alkalis, and least soluble with Na/K+ . Via computation, we define a descriptor (σ-profile) and use an artificial neural network (ANN) to predict all three described alkali-anion solubility trends: amphoteric, normal (Li+ >Na+ >K+ >Rb+ >Cs+ ), and anomalous (Cs+ >Rb+ >K+ >Na+ >Li+ ). Testing predicted amphoteric solubility affirmed the accuracy of the descriptor, provided solution-phase snapshots of alkali-POM interactions, yielded a new POM formulated [Ti6 Nb14 O54 ]14- , and provides guidelines to exploit alkali-POM interactions for new POMs discovery.

3.
Inorg Chem ; 59(12): 8353-8360, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32496796

RESUMO

We present a density functional theory study for the photochemical water oxidation reaction promoted by uranyl nitrate upon sunlight radiation. First, we explored the most stable uranyl complex in the absence of light. The reaction in a dark environmen proceeds through the condensation of uranyl monomers to form dimeric hydroxo-bridged species, which is the first step toward a hydrogen evolution reaction (HER). We found a triplet-state-driven mechanism that leads to the formation of uranyl peroxide and hydrogen gas. To describe in detail this reaction path, we characterized the singlet and triplet low-lying states of the dimeric hydroxo-bridged species, including minima, transition states, minimal energy crossing points, and adiabatic energies. Our computational results provide mechanistic insights that are in good agreement with the experimental data available.

4.
Chem Sci ; 11(32): 8448-8456, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34123104

RESUMO

The self-assembly mechanisms of polyoxometalates (POMs) are still a matter of discussion owing to the difficult task of identifying all the chemical species and reactions involved. We present a new computational methodology that identifies the reaction mechanism for the formation of metal-oxide clusters and provides a speciation model from first-principles and in an automated manner. As a first example, we apply our method to the formation of octamolybdate. In our model, we include variables such as pH, temperature and ionic force because they have a determining effect on driving the reaction to a specific product. Making use of graphs, we set up and solved 2.8 × 105 multi-species chemical equilibrium (MSCE) non-linear equations and found which set of reactions fitted best with the experimental data available. The agreement between computed and experimental speciation diagrams is excellent. Furthermore, we discovered a strong linear dependence between DFT and empirical formation constants, which opens the door for a systematic rescaling.

5.
J Phys Chem B ; 123(49): 10505-10513, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31725296

RESUMO

Molecular dynamics simulations in aqueous solution reveal the existence of two distinct patterns of aggregation in low and high charge density Lindqvist-type polyoxometalates (POMs). Our results indicate the presence of contact and solvent-shared ion pairs and specific and preferential interactions of alkalis with POMs. Highly charged POMs are capable of breaking apart the Li+ and Cs+ solvation shell, thus enhancing the formation of long-lived alkali-POM contact ion pairs, where alkalis act as an electrostatic "glue" forming large oligomers. Stronger ion pair interactions for Li+ than for Cs+ promote lower solubility for Li+ than for Cs+, evoking anomalous solubility trends. Lower charge density POMs are not capable of disrupting the Li+ solvation shell and only solvent-shared ion pairs are formed, whereas for Cs+, contact ion pairs exist. The large number of oxygen atoms in the POM surface enhances the hydrogen bonds between POM and water, thus promoting aggregation. In this case, aggregation follows normal solubility trends. Thus, aggregation depends on the strength of ion pair interactions, the capacity of POM to disrupt alkali's solvation shell, and the contact surface area between the solvent and POM.

6.
Chemistry ; 25(45): 10580-10584, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211477

RESUMO

Group V Nb-polyoxometalate (Nb-POM) chemistry generally lacks the elegant pH-controlled speciation exhibited by group VI (Mo, W) POM chemistry. Here three Nb-POM clusters were isolated and structurally characterized; [Nb14 O40 (O2 )2 H3 ]14- , [((UO2 )(H2 O))3 Nb46 (UO2 )2 O136 H8 (H2 O)4 ]24- , and [(Nb7 O22 H2 )4 (UO2 )7 (H2 O)6 ]22- , that effectively capture the aqueous Nb-POM species from pH 7 to pH 10. These Nb-POMs illustrate a reaction pathway for control over speciation that is driven by counter-cations (Li+ ) rather than pH. The two reported heterometallic POMs (with UO2 2+ moieties) are stabilized by replacing labile H2 O/HO-Nb=O with very stable O=U=O. The third isolated Nb-POM features cis-yl-oxos, prior observed only in group VI POM chemistry. Moreover, with these actinide-heterometal contributions to the burgeoning Nb-POM family, it now transects all major metal groups of the periodic table.

7.
J Am Chem Soc ; 140(34): 10803-10813, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-29975526

RESUMO

Counterions are deemed "spectators" in aqueous solutions of cationic or anionic molecular metal-oxo clusters. While pH and concentration drive aqueous metal speciation as a first approximation, the important effect of counterions is usually overlooked and never considered in standard Pourbaix databases. Alkali counterions for polyoxometalate (POM) clusters control solubility with distinct periodic trends, but evidence for alkali control over speciation is ambiguous. Here we show that a simple Nb-POM, [Nb10O28]6- ({Nb10}), converts to oligomers of (H xNb24O72)(24- x)- ({Nb24}) upon adding only alkali chloride salts, even in buffered neutral solutions. Raman and X-ray scattering reveal that the rate of {Nb10} to {Nb24} conversion increases with alkali cation radius and cation concentration. Cation-bridged oligomers of {Nb24} y ( y = 2,4) are defined by comparing experimental to computed small-angle X-ray scattering spectra. Computational studies and mass spectrometry indicate that the alkalis open the compact {Nb10} cluster in conjunction with protonation of a heptamer {Nb7} intermediate, in which alkali-{Nb10} association at key locations on the cluster initiates the reaction. Computation also explains the alkali periodic trend for {Nb10} to {Nb24} conversion; larger alkalis more effectively destabilize {Nb10}. This periodic trend asserts the hypothesis that Nb-cluster speciation near neutral pH is driven by the alkali cations in the absence of added base or acid. The extremely high solubility of these 3.5 nm polyoxoanion assemblies-2 M Nb at near neutral pH-is both surprising and exploitable for aqueous synthesis of niobate thin films or nanomaterials used in energy and microelectronics applications.

8.
Phys Chem Chem Phys ; 18(9): 6875-84, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878811

RESUMO

In this paper, we study the mechanisms of charge transfer, luminescence and radiationless decay of three derivatives of 4-aminobenzonitrile (ABN): dimethyl-ABN (DMABN) and the tetrafluorinated derivatives, ABN-4F and DMABN-4F. Our CASSCF/CASPT2 computations explain the different luminescence patterns observed in these three compounds and in comparison with the parent system, ABN, in spite of their similar architecture. We have found that the modifications made by the different substitutions in ABN tune the relative energies of the locally excited (LE) and charge transfer (CT) excited states due to electronic and structural factors. In all cases, the only potentially emitting species of CT character is the twisted-ICT. The increasing stabilization of this later species in the series formed by ABN-4F, DMABN and DMABN-4F explains the increasing intensity of the anomalous emission band in these compounds. Nevertheless, other factors like probability of emission vs. nonradiative decay must have also been taken into account. In fact fluoro-substitution increases the accessibility to conical intersections of the excited states with the ground state, opening an internal conversion channel that decreases the fluorescence quantum yield in the fluorinated derivatives. Our results also show that the involvement of the π-σ* state in the CT process is only possible in ABN-4F, but even in this case it is not probable.

9.
Phys Chem Chem Phys ; 18(9): 6861-74, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26880713

RESUMO

Recent theoretical and experimental studies on the Intramolecular Charge Transfer (ICT) reaction of some members of the aminobezonitrile family (ABN) suggest the involvement of a (π-σ*) excited state (called ICT(CN) in this work) in the ICT process and the existence of a partially twisted ICT species that could be responsible for the anomalous fluorescence observed. These suggestions made us to revise our previous study on the photophysics of ABN and dimethyl-ABN (DMABN), based on the analysis of the potential energy surfaces of the low-lying excited states by means of ab initio calculations, using the CASSCF/CASPT2 protocol. We have first focused our attention to ABN. We have found that the (π-σ*) excited state can be in fact an intermediary state in the path to populate the ICT bright state, although its involvement in the process is not very probable. Our results suggest that the ICT most stable species is the twisted ICT(TICT) and that the partially twisted ICT minimum found in previous studies could be an artefact of the computational method. We have also found that radiationless deactivation is a competitive reaction that must be taken into account to explain the fluorescence patterns of these systems. To confirm our theories, we have also studied other systems with a similar architecture but with a very different luminescence behaviour: dimethyl-ABN, and the 2,3,4,5-tetrafluoro derivatives of ABN and DMABN (ABN-4F and DMABN-4F). The extension of the work and the different approaches in the study of the parent system and of the derivatives make the division of the work in two parts advisable. Part I collects the characterization of the minima and reaction paths connecting the critical points of the potential energy surfaces of the states involved in the ICT reaction of ABN. We have obtained, for the first time, the pathways of radiationless deactivation for this compound. We have also computed transition energies from the excited minima, to interpret the excited state absorption (ESA) spectra obtained experimentally. This information helps in the elucidation of the mechanism of ICT. In Part II we show an analoguous study for DMABN and ABN-4F and DMABN-4F and analyse and compare these results and those of Part I to explain different luminescence behaviours of the four systems studied.

10.
J Chem Theory Comput ; 11(10): 4803-13, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26574269

RESUMO

In this computational study, we describe the decay mechanism of DASPMI, providing robust and documented answers to some crucial questions of still open debates on the photophysical behavior of this cationic dye. After the initial excitation, the system evolves along a torsional motion, characterized by a quite flat potential energy surface, which crosses an intramolecular charge transfer (ICT) excited state with higher energy. A nonemissive twisted-ICT (TICT) minimum is populated, and this enhances the radiationless deactivation to the ground state. Additionally, during the twisting motion path toward the TICT minima, the system can emit in a quite wide range of angles, which should lead to a red shift of the locally excited (LE) emission and asymmetric broadening of fluorescence. This picture is fully supported by experimental evidence of the multifluorescence of DASPMI. Three twisted minima are found with different energies (namely, T1, T2, and T3). The extension of the work to charge properties shows that, in the GS, the positive charge of the molecule is mainly localized on the acceptor moiety (i.e., methyl-pyridinium), and after the excitation, the charge delocalizes over the whole molecule with a slight preference for the acceptor moiety. Because of the subsequent deactivation via twisting motions, the positive charge moves from the acceptor to the donor moiety (dimethylaminophenyl moiety) so that in TICT minima the positive charge is localized in the donor part. These large differences between charge localization in LE and TICT minima are responsible for a larger population of twisted forms in solvents of increasing polarity and the enhancement of radiationless deactivation.

11.
J Phys Chem B ; 119(19): 6035-40, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25902008

RESUMO

The long-standing controversy about the presence of two different emissive minima in the lowest excited state of the cationic push-pull dye o-(p-dimethylamino-styryl)-methylpyridinium (DASPMI) was definitively proved through the observation of dual emission, evidenced by both experimental (femtosecond up-conversion measurements) and theoretical (density functional theory calculations) approaches. From the fluorescence up-conversion data of DASPMI in water, the time resolved area normalized spectra (TRANES) were calculated, showing one isoemissive point and therefore revealing the presence of two distinct emissive minima of the excited state potential energy hypersurface with lifetimes of 0.51 and 4.8 ps. These spectroscopic techniques combined with proper data analysis allowed us to discriminate the sub-picosecond emitting state from the occurrence of ultrafast solvation dynamics and to disentangle the overlapping fluorescence (very close in energy) of the two components. Vibronic computations based on TD-DFT potential energy surfaces fully confirm those results and provide deeper insights about the key factors playing a role in determining the overall result. The two emissive minima have different structural and electronic characteristics: on one hand, the locally excited (LE) minimum has a flat geometry and an electric dipole moment smaller than the ground state; on the other hand, the twisted-intramolecular-charge-transfer (TICT) minimum shows a rotation of the methylpyridinium moiety with respect to the rest of the structure, and has an electric dipole moment significantly larger than the ground state.

12.
J Chem Phys ; 141(22): 224114, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25494739

RESUMO

In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π(*), π-π(*), and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.


Assuntos
Estimulantes Ganglionares/química , Nicotina/química , Elétrons , Gases/química , Modelos Moleculares , Teoria Quântica
13.
Photochem Photobiol Sci ; 12(8): 1527-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23842735

RESUMO

We investigate the quantum dynamics of the internal conversion of excitons into charge transfer (CT) states in single-strand oligomers of adenine (An) of different length (n up to 10 units) excited by a short-time laser pulse. Calculations are based on a model vibronic Hamiltonian whose parameters are fitted to accurate time-dependent density functional theory (TD-DFT) calculations, which was shown to reproduce the experimental absorption spectrum with the increase of n. As a first step, we analyze the impact of the vibrational motion on the population transfer in the dimer, highlighting that it causes loss of coherence and slows down the dynamics. For longer oligomers we resort to a simplified approach considering only electronic states and solving the equation of motion for the density matrix driven by inter-state couplings. In this way we are able also to include phenomenologically dephasing terms that mainly simulate intra-molecular effects, and lifetimes of local excitations mimicking monomer-like decay processes. Relaxation effects, whose role is to drive the system towards the thermal equilibrium allowing population exchange among states, are deliberately not considered here, since the focus is on very short-time dynamics. We consider both the cases of an instantaneous and of a finite-time (full width at half maximum 50 fs) laser pulse. According to our calculations, the photoexcited oligomers exhibit a complex dynamics and CT population rises on a 20-30 fs timescale and it persists even on the picosecond timescale. CT population increases with the length of the oligomer and it is only weakly dependent on the relative stability of CT and exciton states (within a range of 1500 cm(-1)). The chain length already modifies the photoexcited dynamics for A2 and A4 systems, but this effect saturates for small n so that the A10 oligomer is also representative of longer chains.


Assuntos
Adenina/química , Dimerização , Elétrons , Lasers , Luz , Processos Fotoquímicos , Teoria Quântica
14.
Phys Chem Chem Phys ; 13(9): 4138-48, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21225064

RESUMO

Phenalenone (PN) is a very efficient singlet oxygen sensitiser in a wide range of solvents. This work uses ab initio quantum chemical calculations (CASSCF/CASPT2 protocol) to study the mechanism for populating the triplet state of PN responsible for this reaction, the (3)(π-π*) state. To describe in detail this reaction path, the singlet and triplet low-lying excited states of PN have been studied, the critical points of the potential energy surfaces corresponding to these states located and the vertical and adiabatic energies calculated. Our results show that, after the initial population of the S(2) excited state of (π-π*) character, the system undergoes an internal conversion to the (1)(n-π*) state. After populating the dark S(1) state, the system relaxes to the (1)(n-π*) minimum, but rapidly populates the triplet manifold through a very efficient intersystem crossing to the (3)(π-π*) state. Although the population of the minimum of this triplet state is strongly favoured, a conical intersection with the (3)(n-π*) surface opens an internal conversion channel to this state, a path accessible only at high temperatures. Radiationless deactivation processes are ruled out on the basis of the high-energy barriers found for the crossings between the excited states and the ground state. Our computational results satisfactorily explain the experimental findings and are in very good agreement with the experimental data available. In the case of the frequency of fluorescence, this is the first time that these data have been theoretically predicted in good agreement with the experimental results.


Assuntos
Fenalenos/química , Oxigênio Singlete/química , Processos Fotoquímicos , Teoria Quântica , Oxigênio Singlete/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA