RESUMO
Extensive research has been focused in the past century on structural, physiological, and molecular attributes of the hippocampus. This interest was created by the unique involvement of the hippocampus in cognitive and affective functions of the brain. Functional analysis revealed that the hippocampus has divergent properties along its axial dimension to the extent that the dorsal sector (dorsal hippocampus, DH) has different connections with the rest of the brain than those of the ventral sector (VH). Still, longitudinal pathways connect the DH with the VH and dampen the functional differences between the sectors. To be able to identify the intrinsic functional difference between the DH and VH, we produced dissociated monolayer cultures from prenatal DH and VH and examined their properties at 10-20 days after plating by imaging the spontaneous activity of the network using Fluo-2 AM, a calcium indicator. Surprisingly, while DH and VH sectors produced dissociated cultures with similar morphological attributes, VH cultures were more active spontaneously than DH cultures. Furthermore, when stimulated to produce action potentials, VH neurons triggered network bursts in postsynaptic neurons more often than DH cultures. Finally, in both DH and VH cultures, electrical stimulation of single cells produced network bursts in response to a burst of action potentials rather than to single spikes. These experiments indicate that even in dissociated cultures, neurons of the VH are more excitable and sensitive to electrical stimulation than DH; hence, they are more likely to generate network bursts and epileptic seizures, as suggested for in vivo brains.
RESUMO
Presenilin 1 (PS1) is a transmembrane proteolytic subunit of γ-secretase that cleaves amyloid precursor proteins. Mutations in PS1 (mPS1) are associated with early-onset familial Alzheimer's disease (AD). The link between mutated PS1, mitochondrial calcium regulation, and AD has been studied extensively in different test systems. Despite the wide-ranging role of mPS1 in AD, there is a paucity of information on the link between PS1 and neuronal cell death, a hallmark of AD. In the present study, we employed the selective mitochondrial uncoupler carbonyl cyanide chlorophenylhydrazone (CCCP) and compared the reactivity of mPS1-transfected cultured rat hippocampal neurons with PS1 and control neurons in a situation of impaired mitochondrial functions. CCCP causes a slow rise in cytosolic and mitochondrial calcium in all three groups of neurons, with the mPS1 neurons demonstrating a faster rise. Consequently, mPS1 neurons were depolarized by CCCP and measured with TMRM, a mitochondrial voltage indicator, more than the other two groups. Morphologically, CCCP produced more filopodia in mPS1 neurons than in the other two groups, which were similarly affected by the drug. Finally, mPS1 transfected neurons tended to die from prolonged exposure to CCCP sooner than the other groups, indicating an increase in vulnerability associated with a lower ability to regulate excess cytosolic calcium.
Assuntos
Doença de Alzheimer , Cálcio , Nitrilas , Animais , Ratos , Carbonil Cianeto m-Clorofenil Hidrazona , Cianetos , Neurônios , Cálcio da Dieta , HipocampoRESUMO
A major route for the influx of calcium ions into neurons uses the STIM-Orai1 voltage-independent channel. Once cytosolic calcium ([Ca2+]i) elevates, it activates mitochondrial and endoplasmic calcium stores to affect downstream molecular pathways. In the present study, we employed a novel drug, carbonyl cyanide chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, to explore the role of mitochondria in cultured neuronal morphology. CCCP caused a sustained elevation of [Ca2+]i and, quite surprisingly, a massive increase in the density of dendritic filopodia and spines in the affected neurons. This morphological change can be prevented in cultures exposed to a calcium-free medium, Orai1 antagonist 2APB, or cells transfected with a mutant Orai1 plasmid. It is suggested that CCCP activates mitochondria through the influx of calcium to cause rapid growth of dendritic processes.
Assuntos
Mitocôndrias , Neurônios , Carbonil Cianeto m-Clorofenil Hidrazona , Cianetos , Cálcio da Dieta , HipocampoRESUMO
While neuronal mitochondria have been studied extensively in their role in health and disease, the rules that govern calcium regulation in mitochondria remain somewhat vague. In the present study using cultured rat hippocampal neurons transfected with the mtRCaMP mitochondrial calcium sensor, we investigated the effects of cytosolic calcium surges on the dynamics of mitochondrial calcium ([Ca2+]m). Cytosolic calcium ([Ca2+]c) was measured using the high affinity sensor Fluo-2. We recorded two types of calcium events: local and global ones. Local events were limited to a small, 2-5 µm section of the dendrite, presumably caused by local synaptic activity, while global events were associated with network bursts and extended throughout the imaged dendrite. In both cases, cytosolic surges were followed by a delayed rise in [Ca2+]m. In global events, the rise lasted longer and was observed in all mitochondrial clusters. At the end of the descending part of the global event, [Ca2+]m was still high. Global events were accompanied by short and rather high [Ca2+]m surges which we called spikelets, and were present until the complete decay of the cytosolic event. In the case of local events, selective short-term responses were limited to the part of the mitochondrial cluster that was located directly in the center of [Ca2+]c activity, and faded quickly, while responses in the neighboring regions were rarely observed. Caffeine (which recruits ryanodine receptors to supply calcium to the mitochondria), and carbonyl cyanide m-chlorophenyl hydrazine (CCCP, a mitochondrial uncoupler) could affect [Ca2+]m in both global and local events. We constructed a computational model to simulate the fundamental role of mitochondria in restricting calcium signals within a narrow range under synapses, preventing diffusion into adjacent regions of the dendrite. Our results indicate that local cytoplasmic and mitochondrial calcium concentrations are highly correlated. This reflects a key role of signaling pathways that connect the postsynaptic membrane to local mitochondrial clusters.
Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Ratos , Animais , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Cafeína/farmacologia , Mitocôndrias/metabolismo , Sinalização do Cálcio , Hipocampo/metabolismo , Neurônios/metabolismoRESUMO
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Assuntos
Síndrome do Cromossomo X Frágil , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Biossíntese de ProteínasRESUMO
Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by a developmentally regulated silencing of the FMR1 gene, but its effect on human neuronal network development and function is not fully understood. Here, we isolated isogenic human embryonic stem cell (hESC) subclones-one with a full FX mutation and one that is free of the mutation (control) but shares the same genetic background-differentiated them into induced neurons (iNs) by forced expression of NEUROG-1, and compared the functional properties of the derived neuronal networks. High-throughput image analysis demonstrates that FX-iNs have significantly smaller cell bodies and reduced arborizations than the control. Both FX- and control-neurons can discharge repetitive action potentials, and FX neuronal networks are also able to generate spontaneous excitatory synaptic currents with slight differences from the control, demonstrating that iNs generate more mature neuronal networks than the previously used protocols. MEA analysis demonstrated that FX networks are hyperexcitable with significantly higher spontaneous burst-firing activity compared to the control. Most importantly, cross-correlation analysis enabled quantification of network connectivity to demonstrate that the FX neuronal networks are significantly less synchronous than the control, which can explain the origin of the development of intellectual dysfunction associated with FXS.
Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Potenciais da Membrana , Transcriptoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Proteína do X Frágil da Deficiência Intelectual/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese , RatosRESUMO
Early life stress is an important vulnerability factor for the development of anxiety disorders, depression and late-onset cognitive decline. Recently, we demonstrated that juvenile stress (JS) lastingly enhanced long-term potentiation via reduction of steady-state glutamine synthetase mRNA expression and the associated dysregulation of the astrocytic glutamate-glutamine cycle in the rat ventral CA1. We now investigated the regulation of steady-state mRNA expression of neuronal gene products that determine GABAergic and glutamatergic neurotransmission in layers of the ventral and dorsal CA1 after JS. We further studied their interaction with stress in young adult age (AS) to address their putative role in psychopathology development. Strikingly, mRNA levels of the glutamic acid decarboxylase (GAD) isoforms GAD65 and of the GABA-A receptor α2 (Gabra2) were increased after single JS or AS, but not after combined JS/AS stress experience. In fact, JS/AS resulted in layer-specific reduction of Gabra2 and also of Gabra1 mRNA levels in the ventral CA1. Furthermore, GAD65 and Gabra2 mRNAs were correlated with glutamatergic AMPA and NMDA receptor subunit mRNAs after single JS and AS, but not after combined JS/AS. Together, these data indicate a loss of allostatic regulation of steady-state mRNA levels of key GABAergic components that may result in a dysregulation of excitation/ inhibition balance in the ventral CA1 upon dual stress exposure. Finally, individual differences in local glucocorticoid receptor mRNA expression may contribute to this regulation.
Assuntos
Hipocampo , Transtornos Mentais , Animais , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Neurônios/metabolismo , RNA Mensageiro/metabolismo , RatosRESUMO
The interplay between excitation and inhibition is crucial for neuronal circuitry in the brain. Inhibitory cell fractions in the neocortex and hippocampus are typically maintained at 15 to 30%, which is assumed to be important for stable dynamics. We have studied systematically the role of precisely controlled excitatory/inhibitory (E/I) cellular ratios on network activity using mice hippocampal cultures. Surprisingly, networks with varying E/I ratios maintain stable bursting dynamics. Interburst intervals remain constant for most ratios, except in the extremes of 0 to 10% and 90 to 100% inhibitory cells. Single-cell recordings and modeling suggest that networks adapt to chronic alterations of E/I compositions by balancing E/I connectivity. Gradual blockade of inhibition substantiates the agreement between the model and experiment and defines its limits. Combining measurements of population and single-cell activity with theoretical modeling, we provide a clearer picture of how E/I balance is preserved and where it fails in living neuronal networks.
Assuntos
Rede Nervosa , Plasticidade Neuronal , Neurônios/fisiologia , Transmissão Sináptica , Animais , Contagem de Células , Células Cultivadas , Fenômenos Eletrofisiológicos , Hipocampo , Camundongos , Modelos Biológicos , Neocórtex , Análise de Célula ÚnicaRESUMO
Injection of corticosterone (CORT) in the dorsal hippocampus (DH) can mimic post-traumatic stress disorder (PTSD)-related memory in mice: both maladaptive hypermnesia for a salient but irrelevant simple cue and amnesia for the traumatic context. However, accumulated evidence indicates a functional dissociation within the hippocampus such that contextual learning is primarily associated with the DH whereas emotional processes are more linked to the ventral hippocampus (VH). This suggests that CORT might have different effects on fear memories as a function of the hippocampal sector preferentially targeted and the type of fear learning (contextual vs. cued) considered. We tested this hypothesis in mice using CORT infusion into the DH or VH after fear conditioning, during which a tone was either paired (predicting-tone) or unpaired (predicting-context) with the shock. We first replicate our previous results showing that intra-DH CORT infusion impairs contextual fear conditioning while inducing fear responses to the not predictive tone. Second, we show that, in contrast, intra-VH CORT infusion has opposite effects on fear memories: in the predicting-tone situation, it blocks tone fear conditioning while enhancing the fear responses to the context. In both situations, a false fear memory is formed based on an erroneous selection of the predictor of the threat. Third, these opposite effects of CORT on fear memory are both mediated by glucocorticoid receptor (GR) activation, and reproduced by post-conditioning stress or systemic CORT injection. These findings demonstrate that false opposing fear memories can be produced depending on the hippocampal sector in which the GRs are activated.
RESUMO
This review focuses on the inter- and transgenerational effects of stress experience prior to and during gestation. We provide an overview of findings from studies in humans as well as in animal models on brain structural and physiological functions and on the development of cognitive and executive functions. We also discuss the concept of stress-induced (re-)programming in more detail by highlighting epigenetic mechanisms and particularly those affecting the development of monoaminergic transmitter systems, which constitute the brains reward system. As the majority of studies have focused on male individuals we will emphasize sex-specific differences in stress vulnerability and resilience. Finally, we offer some perspectives on the development of protective and therapeutic interventions in cognitive and emotional disturbances resulting from pre-conception and prenatal stress.
Assuntos
Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo , Epigênese Genética , Feminino , Humanos , Masculino , Gravidez , Estresse PsicológicoRESUMO
There are growing indications for the involvement of calcium stores in the plastic properties of neurons and particularly in dendritic spines of central neurons. The store-operated calcium entry (SOCE) channels are assumed to be activated by the calcium sensor stromal interaction molecule (STIM)which leads to activation of its associated Orai channel. There are two STIM species, and the differential role of the two in SOCE is not entirely clear. In the present study, we were able to distinguish between transfected STIM1, which is more mobile primarily in young neurons, and STIM2 which is less mobile and more prominent in older neurons in culture. STIM1 mobility is associated with spontaneous calcium sparks, local transient rise in cytosolic [Ca2+]i, and in the formation and elongation of dendritic filopodia/spines. In contrast, STIM2 is associated with older neurons, where it is mobile and moves into dendritic spines primarily when cytosolic [Ca2+]i levels are reduced, apparently to activate resident Orai channels. These results highlight a role for STIM1 in the regulation of [Ca2+]i fluctuations associated with the formation of dendritic spines or filopodia in the developing neuron, whereas STIM2 is associated with the maintenance of calcium entry into stores in the adult neuron.
RESUMO
Patients with germline mutations in the urea-cycle enzyme argininosuccinate lyase (ASL) are at risk for developing neurobehavioral and cognitive deficits. We find that ASL is prominently expressed in the nucleus locus coeruleus (LC), the central source of norepinephrine. Using natural history data, we show that individuals with ASL deficiency are at risk for developing attention deficits. By generating LC-ASL-conditional knockout (cKO) mice, we further demonstrate altered response to stressful stimuli with increased seizure reactivity in LC-ASL-cKO mice. Depletion of ASL in LC neurons leads to reduced amount and activity of tyrosine hydroxylase (TH) and to decreased catecholamines synthesis, due to decreased nitric oxide (NO) signaling. NO donors normalize catecholamine levels in the LC, seizure sensitivity, and the stress response in LC-ASL-cKO mice. Our data emphasize ASL importance for the metabolic regulation of LC function with translational relevance for ASL deficiency (ASLD) patients as well as for LC-related pathologies.
Assuntos
Argininossuccinato Liase/metabolismo , Locus Cerúleo/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Animais , Catecolaminas/metabolismo , Núcleo Celular/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Convulsões/metabolismoRESUMO
Mutations in the presenilin 1 (PS1) gene are a major trigger of familial Alzheimer's disease (AD), yet the mechanisms affected by mutated PS1 causing cognitive decline are not yet elucidated. In the present study, we compared rat hippocampal neurons in culture, transfected with PS1 or with mutant (M146V) PS1 (mPS1) plasmids in several neuronal functions. Initially, we confirmed earlier observations that mPS1-expressing neurons are endowed with fewer mature "mushroom" spines and more filopodial immature protrusions. The correlation between calcium changes in the cytosol, mitochondria, and endoplasmic reticulum (ER) is mitigated in the mPS1 neurons, tested by the response to an abrupt increase in ambient [Ca2+]o; cytosolic [Ca2+]i is higher in the mPS1 neurons but mitochondrial [Ca2+] is lower than in control neurons. Strikingly, mPS1-transfected neurons express higher excitability and eventual lower survival rate when exposed to the oxidative stressor, paraquat. These results highlight an impaired calcium regulation in mPS1 neurons, resulting in a reduced ability to handle oxidative stress, which may lead to cell death and AD.
Assuntos
Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Presenilina-1/metabolismo , Animais , Células Cultivadas , Mutação , RatosRESUMO
Disruption in calcium homeostasis is linked to several pathologies and is suggested to play a pivotal role in the cascade of events leading to Alzheimer's disease (AD). Synaptopodin (SP) residing in dendritic spines has been associated with ryanodine receptor (RyR), such that spines lacking SP release less calcium from stores. In this work, we mated SPKO with 3xTg mice (3xTg/SPKO) to test the effect of SP deficiency in the AD mouse. We found that 6-month-old male 3xTg/SPKO mice restored normal spatial learning in the Barns maze, LTP in hippocampal slices, and expression levels of RyR in the hippocampus that were altered in the 3xTg mice. In addition, there was a marked reduction in 3xTg-associated phosphorylated tau, amyloid ß plaques, and activated microglia in 3xTg/SPKO male and female mice. These experiments indicate that a reduction in the expression of SP ameliorates AD-associated phenotype in 3xTg mice.SIGNIFICANCE STATEMENT This study strengthens the proposed role of calcium stores in the development of AD-associated phenotype in the 3xTg mouse model, in that a genetic reduction of the functioning of ryanodine receptors using synaptopodin-knock-out mice ameliorates AD symptoms at the behavioral, electrophysiological, and morphological levels of analysis.
Assuntos
Doença de Alzheimer/metabolismo , Sinalização do Cálcio , Proteínas dos Microfilamentos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Placa Amiloide/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas tau/metabolismoRESUMO
Performing electrophysiological recordings from human neurons that have been differentiated in vitro, as compared to primary cultures, raises many challenges. However, patch-clamp recording from neurons derived from stem cells provides an abundance of valuable information, reliably and fast. Here, we describe a protocol that is used successfully in our lab for recording from both control and Fragile X neurons, derived in vitro from human embryonic stem cells.
Assuntos
Diferenciação Celular , Fenômenos Eletrofisiológicos , Síndrome do Cromossomo X Frágil/fisiopatologia , Células-Tronco Embrionárias Humanas/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Células Cultivadas , Células-Tronco Embrionárias Humanas/citologia , Humanos , Neurônios/citologiaRESUMO
Palmitoyl-protein thioesterase 1 (PPT1) is a depalmitoylation enzyme that is mutated in cases of neuronal ceroid lipofuscinosis (NCL). The hallmarks of the disease include progressive neurodegeneration and blindness, as well as seizures. In the current study, we identified 62 high-confident PPT1-binding proteins. These proteins included a self-interaction of PPT1, two V-type ATPases, calcium voltage-gated channels, cytoskeletal proteins and others. Pathway analysis suggested their involvement in seizures and neuronal morphology. We then proceeded to demonstrate that hippocampal neurons from Ppt1-/- mice exhibit structural deficits, and further investigated electrophysiology parameters in the hippocampi of mutant mice, both in brain slices and dissociated postnatal primary cultures. Our studies reveal new mechanistic features involved in the pathophysiology of this devastating neurodegenerative disease.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: A major concern in modern society involves the lasting detrimental behavioral effects of exposure to alcoholic beverages. Consequently, hundreds of folk remedies for hangover have been suggested, most of them without a scientific basis, for lack of proper test systems. Over centuries, yellow toadflax (Linaria vulgaris Mill., Lv) tincture has been used in Russian traditional medicine to treat the spectrum of hangover symptoms such as vertigo, headache, drunken behaviors, and as a sedative. MATERIALS AND METHODS: Here we use in-vitro cultured hippocampal neurons to examine the effect of the Lv extract as well as the flavonoid acetylpectolinarin (ACP) exclusively found in Lv extract, on spontaneous network activity of the cultured neurons exposed to low, physiological concentrations of ethanol. RESULTS: As in previous studies, low (0.25-0.5%) ethanol causes an increase in network activity, which was converted to suppression, with high concentrations of ethanol. Lv extract and ACP, at low concentrations, had no appreciable effect on spontaneous activity, but they blocked the facilitating action of low ethanol. This action of ACP was also seen when the culture was exposed to 1-EBIO, a SK potassium channel opener, and was blocked by apamin, an SK channel antagonist. In contrast, ACP or Lv extracts did not reverse the suppressive effects of higher ethanol. CONCLUSIONS: Our results suggest that ACP acts by interacting with the SK channel, to block the facilitatory effect of low concentration of ethanol, on network activity in hippocampal cultures.
Assuntos
Cromonas/farmacologia , Etanol/efeitos adversos , Flavonoides/farmacologia , Hipocampo/efeitos dos fármacos , Linaria , Extratos Vegetais/farmacologia , Apamina/farmacologia , Hipocampo/fisiologia , Medicina Tradicional , Bloqueadores dos Canais de Potássio/farmacologia , Federação RussaRESUMO
Mitochondrial Carrier Homolog 2 (MTCH2) acts as a receptor for the BH3 interacting-domain death agonist (BID) in the mitochondrial outer membrane. Loss of MTCH2 affects mitochondria energy metabolism and function. MTCH2 forebrain conditional KO (MTCH2 BKO) display a deficit in hippocampus-dependent cognitive functions. Here we study age-related MTCH2 BKO behavioral and electrophysiological aspects of hippocampal functions. MTCH2 BKO exhibit impaired spatial but not motor learning and an impairment in long-term potentiation (LTP) in hippocampal slices. Moreover, MTCH2 BKO express an increase in activated microglia, in addition to a reduction in neuron density in the hippocampus, but do not express amyloid-ß plaques or neurofibrillary tangles. These results highlight the role of mitochondria in the normal hippocampus-dependent memory formation.