Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell Rep ; 43(4): 114100, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607921

RESUMO

Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.


Assuntos
Região CA1 Hipocampal , Dendritos , Células Piramidais , Humanos , Células Piramidais/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Animais , Masculino , Camundongos , Dendritos/fisiologia , Feminino , Pessoa de Meia-Idade , Idoso , Ritmo Teta/fisiologia , Adulto
2.
eNeuro ; 10(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414554

RESUMO

Long-term synaptic plasticity is mediated via cytosolic calcium concentrations ([Ca2+]). Using a synaptic model that implements calcium-based long-term plasticity via two sources of Ca2+ - NMDA receptors and voltage-gated calcium channels (VGCCs) - we show in dendritic cable simulations that the interplay between these two calcium sources can result in a diverse array of heterosynaptic effects. When spatially clustered synaptic input produces a local NMDA spike, the resulting dendritic depolarization can activate VGCCs at nonactivated spines, resulting in heterosynaptic plasticity. NMDA spike activation at a given dendritic location will tend to depolarize dendritic regions that are located distally to the input site more than dendritic sites that are proximal to it. This asymmetry can produce a hierarchical effect in branching dendrites, where an NMDA spike at a proximal branch can induce heterosynaptic plasticity primarily at branches that are distal to it. We also explored how simultaneously activated synaptic clusters located at different dendritic locations synergistically affect the plasticity at the active synapses, as well as the heterosynaptic plasticity of an inactive synapse "sandwiched" between them. We conclude that the inherent electrical asymmetry of dendritic trees enables sophisticated schemes for spatially targeted supervision of heterosynaptic plasticity.


Assuntos
Dendritos , N-Metilaspartato , Dendritos/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Receptores de N-Metil-D-Aspartato , Sinapses/metabolismo , Plasticidade Neuronal/fisiologia
3.
J Neurosci ; 43(23): 4192-4193, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286340
4.
Front Neural Circuits ; 17: 1157259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151358

RESUMO

Dynamic changes in sensory representations have been basic tenants of studies in neural coding and plasticity. In olfaction, relatively little is known about the dynamic range of changes in odor representations under different brain states and over time. Here, we used time-lapse in vivo two-photon calcium imaging to describe changes in odor representation by mitral cells, the output neurons of the mouse olfactory bulb. Using anesthetics as a gross manipulation to switch between different brain states (wakefulness and under anesthesia), we found that odor representations by mitral cells undergo significant re-shaping across states but not over time within state. Odor representations were well balanced across the population in the awake state yet highly diverse under anesthesia. To evaluate differences in odor representation across states, we used linear classifiers to decode odor identity in one state based on training data from the other state. Decoding across states resulted in nearly chance-level accuracy. In contrast, repeating the same procedure for data recorded within the same state but in different time points, showed that time had a rather minor impact on odor representations. Relative to the differences across states, odor representations remained stable over months. Thus, single mitral cells can change dynamically across states but maintain robust representations across months. These findings have implications for sensory coding and plasticity in the mammalian brain.


Assuntos
Odorantes , Bulbo Olfatório , Camundongos , Animais , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Neurônios/fisiologia , Mamíferos
5.
Nat Neurosci ; 26(3): 470-480, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732641

RESUMO

The thalamus is the main gateway for sensory information from the periphery to the mammalian cerebral cortex. A major conundrum has been the discrepancy between the thalamus's central role as the primary feedforward projection system into the neocortex and the sparseness of thalamocortical synapses. Here we use new methods, combining genetic tools and scalable tissue expansion microscopy for whole-cell synaptic mapping, revealing the number, density and size of thalamic versus cortical excitatory synapses onto individual layer 2/3 (L2/3) pyramidal cells (PCs) of the mouse primary visual cortex. We find that thalamic inputs are not only sparse, but remarkably heterogeneous in number and density across individual dendrites and neurons. Most surprising, despite their sparseness, thalamic synapses onto L2/3 PCs are smaller than their cortical counterparts. Incorporating these findings into fine-scale, anatomically faithful biophysical models of L2/3 PCs reveals how individual neurons with sparse and weak thalamocortical synapses, embedded in small heterogeneous neuronal ensembles, may reliably 'read out' visually driven thalamic input.


Assuntos
Neocórtex , Tálamo , Camundongos , Animais , Tálamo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Células Piramidais , Mamíferos
6.
Cereb Cortex ; 33(6): 2857-2878, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35802476

RESUMO

Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.


Assuntos
Neocórtex , Receptores de N-Metil-D-Aspartato , Ratos , Adulto , Animais , Humanos , Camundongos , Receptores de N-Metil-D-Aspartato/fisiologia , Ratos Wistar , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia
7.
EMBO J ; 42(1): e110565, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36377476

RESUMO

Cortical neuronal networks control cognitive output, but their composition and modulation remain elusive. Here, we studied the morphological and transcriptional diversity of cortical cholinergic VIP/ChAT interneurons (VChIs), a sparse population with a largely unknown function. We focused on VChIs from the whole barrel cortex and developed a high-throughput automated reconstruction framework, termed PopRec, to characterize hundreds of VChIs from each mouse in an unbiased manner, while preserving 3D cortical coordinates in multiple cleared mouse brains, accumulating thousands of cells. We identified two fundamentally distinct morphological types of VChIs, bipolar and multipolar that differ in their cortical distribution and general morphological features. Following mild unilateral whisker deprivation on postnatal day seven, we found after three weeks both ipsi- and contralateral dendritic arborization differences and modified cortical depth and distribution patterns in the barrel fields alone. To seek the transcriptomic drivers, we developed NuNeX, a method for isolating nuclei from fixed tissues, to explore sorted VChIs. This highlighted differentially expressed neuronal structural transcripts, altered exitatory innervation pathways and established Elmo1 as a key regulator of morphology following deprivation.


Assuntos
Lobo Parietal , Transcriptoma , Camundongos , Animais , Interneurônios/fisiologia , Colina O-Acetiltransferase , Colinérgicos/metabolismo , Células Receptoras Sensoriais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
Nat Commun ; 13(1): 3038, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650191

RESUMO

Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.


Assuntos
Potenciação de Longa Duração , Neocórtex , Cálcio/metabolismo , Depressão , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia
9.
Front Big Data ; 5: 789962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402905

RESUMO

Many scientific systems are studied using computer codes that simulate the phenomena of interest. Computer simulation enables scientists to study a broad range of possible conditions, generating large quantities of data at a faster rate than the laboratory. Computer models are widespread in neuroscience, where they are used to mimic brain function at different levels. These models offer a variety of new possibilities for the neuroscientist, but also numerous challenges, such as: where to sample the input space for the simulator, how to make sense of the data that is generated, and how to estimate unknown parameters in the model. Statistical emulation can be a valuable complement to simulator-based research. Emulators are able to mimic the simulator, often with a much smaller computational burden and they are especially valuable for parameter estimation, which may require many simulator evaluations. This work compares different statistical models that address these challenges, and applies them to simulations of neocortical L2/3 large basket cells, created and run with the NEURON simulator in the context of the European Human Brain Project. The novelty of our approach is the use of fast empirical emulators, which have the ability to accelerate the optimization process for the simulator and to identify which inputs (in this case, different membrane ion channels) are most influential in affecting simulated features. These contributions are complementary, as knowledge of the important features can further improve the optimization process. Subsequent research, conducted after the process is completed, will gain efficiency by focusing on these inputs.

10.
J Neurosci ; 42(7): 1184-1195, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34893549

RESUMO

Nonlinear synaptic integration in dendrites is a fundamental aspect of neural computation. One such key mechanism is the Ca2+ spike at the apical tuft of pyramidal neurons. Characterized by a plateau potential sustained for tens of milliseconds, the Ca2+ spike amplifies excitatory input, facilitates somatic action potentials (APs), and promotes synaptic plasticity. Despite its essential role, the mechanisms regulating it are largely unknown. Using a compartmental model of a layer 5 pyramidal cell (L5PC), we explored the plateau and termination phases of the Ca2+ spike under input current perturbations, long-step current-injections, and variations in the dendritic high-voltage-activated Ca2+ conductance (that occur during cholinergic modulation). We found that, surprisingly, timed excitatory input can shorten the Ca2+ spike duration while inhibitory input can either elongate or terminate it. A significant elongation also occurs when the high-voltage-activated Ca2+ channels (CaHVA) conductance is increased. To mechanistically understand these phenomena, we analyzed the currents involved in the spike. The plateau and termination phases are almost exclusively controlled by the CaHVA inward current and the Im outward K+ current. We reduced the full model to a single-compartment model that faithfully preserved the responses of the Ca2+ spike to interventions and consisted of two dynamic variables: the membrane potential and the K+-channel activation level. A phase-plane analysis of the reduced model provides testable predictions for modulating the Ca2+ spike and reveals various dynamical regimes that explain the robust nature of the spike. Regulating the duration of the Ca2+ spike significantly impacts the cell synaptic-plasticity window and, as we show, its input-output relationship.SIGNIFICANCE STATEMENT Pyramidal neurons are the cortex's principal projection neurons. In their apical tuft, dendritic Ca2+ spikes significantly impact information processing, synaptic plasticity, and the cell's input-output relationship. Therefore, it is essential to understand the mechanisms regulating them. Using a compartmental model of a layer 5 pyramidal cell (L5PC), we explored the Ca2+ spike responses to synaptic perturbations and cholinergic modulation. We showed a counterintuitive phenomenon: early excitatory input shortens the spike, whereas weak inhibition elongates it. Also, we demonstrated that acetylcholine (ACh) extends the spike. Through a reduced model containing only the membrane potential and the K+-channel activation level, we explained these phenomena using a phase-plane analysis. Our work provides new information about the robustness of the Ca2+ spike and its controlling mechanisms.


Assuntos
Acetilcolina/metabolismo , Cálcio/metabolismo , Dendritos/metabolismo , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Potenciais de Ação/fisiologia , Animais , Humanos , Sinapses/fisiologia
11.
PLoS Comput Biol ; 17(12): e1009754, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968385

RESUMO

Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs-sustained in the proximal and transient in the distal processes-are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs' centrifugal preference and its contribution to direction selectivity.


Assuntos
Células Amácrinas/fisiologia , Modelos Neurológicos , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Algoritmos , Animais , Biologia Computacional , Camundongos
12.
PLoS Comput Biol ; 17(11): e1009558, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34727124

RESUMO

The output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ~10,000 synapses impinging on the neuron's dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ~2-spikes at ~250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.


Assuntos
Células Piramidais/citologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , N-Metilaspartato/metabolismo , Sódio/metabolismo
13.
Front Neural Circuits ; 15: 718270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630046

RESUMO

Many neurodegenerative diseases are associated with the death of specific neuron types in particular brain regions. What makes the death of specific neuron types particularly harmful for the integrity and dynamics of the respective network is not well understood. To start addressing this question we used the most up-to-date biologically realistic dense neocortical microcircuit (NMC) of the rodent, which has reconstructed a volume of 0.3 mm3 and containing 31,000 neurons, ∼37 million synapses, and 55 morphological cell types arranged in six cortical layers. Using modern network science tools, we identified hub neurons in the NMC, that are connected synaptically to a large number of their neighbors and systematically examined the impact of abolishing these cells. In general, the structural integrity of the network is robust to cells' attack; yet, attacking hub neurons strongly impacted the small-world topology of the network, whereas similar attacks on random neurons have a negligible effect. Such hub-specific attacks are also impactful on the network dynamics, both when the network is at its spontaneous synchronous state and when it was presented with synchronized thalamo-cortical visual-like input. We found that attacking layer 5 hub neurons is most harmful to the structural and functional integrity of the NMC. The significance of our results for understanding the role of specific neuron types and cortical layers for disease manifestation is discussed.


Assuntos
Neurônios , Sinapses , Encéfalo , Rede Nervosa
14.
Neuron ; 109(17): 2727-2739.e3, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380016

RESUMO

Utilizing recent advances in machine learning, we introduce a systematic approach to characterize neurons' input/output (I/O) mapping complexity. Deep neural networks (DNNs) were trained to faithfully replicate the I/O function of various biophysical models of cortical neurons at millisecond (spiking) resolution. A temporally convolutional DNN with five to eight layers was required to capture the I/O mapping of a realistic model of a layer 5 cortical pyramidal cell (L5PC). This DNN generalized well when presented with inputs widely outside the training distribution. When NMDA receptors were removed, a much simpler network (fully connected neural network with one hidden layer) was sufficient to fit the model. Analysis of the DNNs' weight matrices revealed that synaptic integration in dendritic branches could be conceptualized as pattern matching from a set of spatiotemporal templates. This study provides a unified characterization of the computational complexity of single neurons and suggests that cortical networks therefore have a unique architecture, potentially supporting their computational power.


Assuntos
Córtex Cerebral/fisiologia , Aprendizado Profundo , Modelos Neurológicos , Células Piramidais/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Dendritos/fisiologia , Humanos , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
15.
PLoS Comput Biol ; 17(5): e1009015, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34029309

RESUMO

Synaptic clustering on neuronal dendrites has been hypothesized to play an important role in implementing pattern recognition. Neighboring synapses on a dendritic branch can interact in a synergistic, cooperative manner via nonlinear voltage-dependent mechanisms, such as NMDA receptors. Inspired by the NMDA receptor, the single-branch clusteron learning algorithm takes advantage of location-dependent multiplicative nonlinearities to solve classification tasks by randomly shuffling the locations of "under-performing" synapses on a model dendrite during learning ("structural plasticity"), eventually resulting in synapses with correlated activity being placed next to each other on the dendrite. We propose an alternative model, the gradient clusteron, or G-clusteron, which uses an analytically-derived gradient descent rule where synapses are "attracted to" or "repelled from" each other in an input- and location-dependent manner. We demonstrate the classification ability of this algorithm by testing it on the MNIST handwritten digit dataset and show that, when using a softmax activation function, the accuracy of the G-clusteron on the all-versus-all MNIST task (~85%) approaches that of logistic regression (~93%). In addition to the location update rule, we also derive a learning rule for the synaptic weights of the G-clusteron ("functional plasticity") and show that a G-clusteron that utilizes the weight update rule can achieve ~89% accuracy on the MNIST task. We also show that a G-clusteron with both the weight and location update rules can learn to solve the XOR problem from arbitrary initial conditions.


Assuntos
Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Sinapses/fisiologia
16.
PLoS Comput Biol ; 17(5): e1008965, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34014926

RESUMO

The visual system must make predictions to compensate for inherent delays in its processing. Yet little is known, mechanistically, about how prediction aids natural behaviors. Here, we show that despite a 20-30ms intrinsic processing delay, the vertical motion sensitive (VS) network of the blowfly achieves maximally efficient prediction. This prediction enables the fly to fine-tune its complex, yet brief, evasive flight maneuvers according to its initial ego-rotation at the time of detection of the visual threat. Combining a rich database of behavioral recordings with detailed compartmental modeling of the VS network, we further show that the VS network has axonal gap junctions that are critical for optimal prediction. During evasive maneuvers, a VS subpopulation that directly innervates the neck motor center can convey predictive information about the fly's future ego-rotation, potentially crucial for ongoing flight control. These results suggest a novel sensory-motor pathway that links sensory prediction to behavior.


Assuntos
Dípteros/fisiologia , Voo Animal , Vias Visuais , Animais , Percepção de Movimento
17.
Sci Rep ; 10(1): 20808, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257760

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 requires a fast development of antiviral drugs. SARS-CoV-2 viral main protease (Mpro, also called 3C-like protease, 3CLpro) is a potential target for drug design. Crystal and co-crystal structures of the SARS-CoV-2 Mpro have been solved, enabling the rational design of inhibitory compounds. In this study we analyzed the available SARS-CoV-2 and the highly similar SARS-CoV-1 crystal structures. We identified within the active site of the Mpro, in addition to the inhibitory ligands' interaction with the catalytic C145, two key H-bond interactions with the conserved H163 and E166 residues. Both H-bond interactions are present in almost all co-crystals and are likely to occur also during the viral polypeptide cleavage process as suggested from docking of the Mpro cleavage recognition sequence. We screened in silico a library of 6900 FDA-approved drugs (ChEMBL) and filtered using these key interactions and selected 29 non-covalent compounds predicted to bind to the protease. Additional screen, using DOCKovalent was carried out on DrugBank library (11,414 experimental and approved drugs) and resulted in 6 covalent compounds. The selected compounds from both screens were tested in vitro by a protease activity inhibition assay. Two compounds showed activity at the 50 µM concentration range. Our analysis and findings can facilitate and focus the development of highly potent inhibitors against SARS-CoV-2 infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Domínio Catalítico/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
18.
Front Comput Neurosci ; 14: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390819

RESUMO

The perceptron learning algorithm and its multiple-layer extension, the backpropagation algorithm, are the foundations of the present-day machine learning revolution. However, these algorithms utilize a highly simplified mathematical abstraction of a neuron; it is not clear to what extent real biophysical neurons with morphologically-extended non-linear dendritic trees and conductance-based synapses can realize perceptron-like learning. Here we implemented the perceptron learning algorithm in a realistic biophysical model of a layer 5 cortical pyramidal cell with a full complement of non-linear dendritic channels. We tested this biophysical perceptron (BP) on a classification task, where it needed to correctly binarily classify 100, 1,000, or 2,000 patterns, and a generalization task, where it was required to discriminate between two "noisy" patterns. We show that the BP performs these tasks with an accuracy comparable to that of the original perceptron, though the classification capacity of the apical tuft is somewhat limited. We concluded that cortical pyramidal neurons can act as powerful classification devices.

19.
Neuron ; 106(4): 566-578.e8, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32169170

RESUMO

The balance between excitatory and inhibitory (E and I) synapses is thought to be critical for information processing in neural circuits. However, little is known about the spatial principles of E and I synaptic organization across the entire dendritic tree of mammalian neurons. We developed a new open-source reconstruction platform for mapping the size and spatial distribution of E and I synapses received by individual genetically-labeled layer 2/3 (L2/3) cortical pyramidal neurons (PNs) in vivo. We mapped over 90,000 E and I synapses across twelve L2/3 PNs and uncovered structured organization of E and I synapses across dendritic domains as well as within individual dendritic segments. Despite significant domain-specific variation in the absolute density of E and I synapses, their ratio is strikingly balanced locally across dendritic segments. Computational modeling indicates that this spatially precise E/I balance dampens dendritic voltage fluctuations and strongly impacts neuronal firing output.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Sinapses , Animais , Dendritos/fisiologia , Dendritos/ultraestrutura , Humanos , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Software , Sinapses/fisiologia , Sinapses/ultraestrutura
20.
Elife ; 92020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32043972

RESUMO

The electrical connectivity in the inferior olive (IO) nucleus plays an important role in generating well-timed spiking activity. Here we combined electrophysiological and computational approaches to assess the functional organization of the IO nucleus in mice. Spontaneous fast and slow subthreshold events were commonly encountered during in vitro recordings. We show that whereas the fast events represent intrinsic regenerative activity, the slow events reflect the electrical connectivity between neurons ('spikelets'). Recordings from cell pairs revealed the synchronized occurrence of distinct groups of spikelets; their rate and distribution enabled an accurate estimation of the number of connected cells and is suggestive of a clustered organization. This study thus provides a new perspective on the functional and structural organization of the olivary nucleus and a novel experimental and theoretical approach to study electrically coupled networks.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Núcleo Olivar/fisiologia , Animais , Camundongos , Rede Nervosa/citologia , Núcleo Olivar/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA