Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Physiol Biochem ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787512

RESUMO

Olive oil is the main source of lipid energy in the Mediterranean diet and there is strong evidence of its health benefits. The effect of extra virgin olive oil (EVOO) in the form of a preparation of spreadable virgin olive oil (S-VO) on the progression of atheroma plaques was investigated in Apoe-deficient mice, a model of accelerated atherosclerosis. METHODS: Two isocaloric Western purified diets containing 20% fat, either as S-VO or as dairy butter, were used to feed 28 males and 16 females of two-month-old Apoe-deficient mice for 12 weeks. S-VO was prepared by blending more than 75% virgin olive oil with other vegetal natural fat to obtain a solid fat. Plasma total cholesterol, triglycerides and HDL cholesterol were measured. Hepatic lipid droplets were analyzed. Areas of atherosclerotic aortic lesions were quantified in cross-sectional images of the proximal aorta and en face analysis of the whole aorta. RESULTS: Total plasma cholesterol was increased in mice on the butter-supplemented diet in both female and male mice compared to S-VO, and the ratio of TC/HDL-cholesterol was significantly lower in S-VO than in the butter diet, although only in males, and no differences in plasma triglycerides were observed. No significant differences in hepatic lipid droplets were observed between diets in either sex. Aortic lesion areas were significantly higher in mice consuming the butter versus the S-VO diet in both sexes. CONCLUSION: Extra virgin olive oil prepared in spreadable form maintained the delay in atheroma plaque progression compared to butter.

2.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775150

RESUMO

This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients' blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.


Assuntos
Anemia de Diamond-Blackfan , Terapia Genética , Vetores Genéticos , Células-Tronco Hematopoéticas , Lentivirus , Proteínas Ribossômicas , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/genética , Humanos , Terapia Genética/métodos , Lentivirus/genética , Proteínas Ribossômicas/genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Camundongos , Masculino , Feminino , Ribossomos/metabolismo , Ribossomos/genética , Regiões Promotoras Genéticas , Mutação , Transplante de Células-Tronco Hematopoéticas/métodos
3.
BMC Psychol ; 12(1): 217, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641852

RESUMO

BACKGROUND: The person-centered care (PCC) approach plays a fundamental role in ensuring quality healthcare. The Person-Centered Care Assessment Tool (P-CAT) is one of the shortest and simplest tools currently available for measuring PCC. The objective of this study was to conduct a systematic review of the evidence in validation studies of the P-CAT, taking the "Standards" as a frame of reference. METHODS: First, a systematic literature review was conducted following the PRISMA method. Second, a systematic descriptive literature review of validity tests was conducted following the "Standards" framework. The search strategy and information sources were obtained from the Cochrane, Web of Science (WoS), Scopus and PubMed databases. With regard to the eligibility criteria and selection process, a protocol was registered in PROSPERO (CRD42022335866), and articles had to meet criteria for inclusion in the systematic review. RESULTS: A total of seven articles were included. Empirical evidence indicates that these validations offer a high number of sources related to test content, internal structure for dimensionality and internal consistency. A moderate number of sources pertain to internal structure in terms of test-retest reliability and the relationship with other variables. There is little evidence of response processes, internal structure in measurement invariance terms, and test consequences. DISCUSSION: The various validations of the P-CAT are not framed in a structured, valid, theory-based procedural framework like the "Standards" are. This can affect clinical practice because people's health may depend on it. The findings of this study show that validation studies continue to focus on the types of validity traditionally studied and overlook interpretation of the scores in terms of their intended use.


Assuntos
Assistência Centrada no Paciente , Qualidade da Assistência à Saúde , Humanos , Psicometria , Reprodutibilidade dos Testes , Atenção à Saúde
4.
iScience ; 27(4): 109530, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577102

RESUMO

Primary hyperoxaluria type 1 (PH1) is a rare inherited metabolic disorder characterized by oxalate overproduction in the liver, resulting in renal damage. It is caused by mutations in the AGXT gene. Combined liver and kidney transplantation is currently the only permanent curative treatment. We combined locus-specific gene correction and hepatic direct cell reprogramming to generate autologous healthy induced hepatocytes (iHeps) from PH1 patient-derived fibroblasts. First, site-specific AGXT corrected cells were obtained by homology directed repair (HDR) assisted by CRISPR-Cas9, following two different strategies: accurate point mutation (c.731T>C) correction or knockin of an enhanced version of AGXT cDNA. Then, iHeps were generated, by overexpression of hepatic transcription factors. Generated AGXT-corrected iHeps showed hepatic gene expression profile and exhibited in vitro reversion of oxalate accumulation compared to non-edited PH1-derived iHeps. This strategy set up a potential alternative cellular source for liver cell replacement therapy and a personalized PH1 in vitro disease model.

5.
Sci Rep ; 14(1): 5441, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443528

RESUMO

The abbreviated measurement of coping strategies is useful for monitoring and identifying the effects of stress. The Coping strategy indicator-Short version (CSI-S, including the dimensions of seeking support, problem solving and avoidance strategies) is a new adaptation of the full version of this indicator, and additional evidence of its validity is needed. Psychology students (n = 125) from a public university in Lima, Peru, were recruited to help provide such evidence of validity in terms of internal structure, reliability and associations with other variables (perceived stress and general efficacy in cope with difficulties), which were evaluated using nonparametric item response theory procedures. Support-seeking and problem-solving items from the Mokken scale and the avoidance scale exhibited limitations. The correlations between the scales were moderate or low and exhibited theoretical consistency, and the relationship with perceived stress highlighted the predictive capacity of avoidance and problem-solving strategies. In general, the CSI-S exhibits suitable psychometric properties; however, the avoidance score requires further examination or reconstruction of its items.


Assuntos
Capacidades de Enfrentamento , Estudantes , Humanos , Reprodutibilidade dos Testes , Psicometria , Peru
6.
Biomedicines ; 12(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255311

RESUMO

The D1R and D3R receptors functionally and synergistically interact in striatonigral neurons. Dopaminergic denervation turns this interaction antagonistic, which is correlated with a decrement in D3nf isoform and an increment in D3R membranal expression. The mechanisms of such changes in D3R are attributed to the dysregulation of the expression of their isoforms. The cause and mechanism of this phenomenon remain unknown. Dopaminergic denervation produces a decrement in D1R and PKA activity; we propose that the lack of phosphorylation of PTB (regulator of alternative splicing) by PKA produces the dysregulation of D3R splicing and changes D3R functionality. By using in silico analysis, we found that D3R mRNA has motifs for PTB binding and, by RIP, co-precipitates with PTB. Moreover, D1R activation via PKA promotes PTB phosphorylation. Acute and 5-day D1R blockade decreases the expression of D3nf mRNA. The 5-day treatment reduces D3R, D3nf, and PTB protein in the cytoplasm and increases D3R in the membrane and PTB in the nucleus. Finally, the blockade of D1R mimics the effect of dopaminergic denervation in D1R and D3R signaling. Thus, our data indicate that through PKA→PTB, D1R modulates D3R splicing, expression, and signaling, which are altered during D1R blockade or the lack of stimulation in dopaminergic denervation.

7.
Gene Ther ; 31(1-2): 31-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37542151

RESUMO

Parkinson`s disease (PD) is the second most prevalent neurodegenerative disease, and different gene therapy strategies have been used as experimental treatments. As a proof-of-concept for the treatment of PD, we used SAM, a CRISPR gene activation system, to activate the endogenous tyrosine hydroxylase gene (th) of astrocytes to produce dopamine (DA) in the striatum of 6-OHDA-lesioned rats. Potential sgRNAs within the rat th promoter region were tested, and the expression of the Th protein was determined in the C6 glial cell line. Employing pseudo-lentivirus, the SAM complex and the selected sgRNA were transferred into cultures of rat astrocytes, and gene expression and Th protein synthesis were ascertained; furthermore, DA release into the culture medium was determined by HPLC. The DA-producing astrocytes were implanted into the striatum of 6-OHDA hemiparkinsonian rats. We observed motor behavior improvement in the lesioned rats that received DA-astrocytes compared to lesioned rats receiving astrocytes that did not produce DA. Our data indicate that the SAM-induced expression of the astrocyte´s endogenous th gene can generate DA-producing astrocytes that effectively reduce the motor asymmetry induced by the lesion.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Oxidopamina , Ratos Sprague-Dawley , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dopamina/metabolismo , Corpo Estriado/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia , Substância Negra/metabolismo
9.
Cell Mol Life Sci ; 80(8): 238, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535170

RESUMO

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Humanos , Animais , Camundongos , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Corpo Estriado/metabolismo , Diferenciação Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
11.
Front Genome Ed ; 5: 1104666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188156

RESUMO

Pyruvate kinase deficiency (PKD) is an autosomal recessive disorder caused by mutations in the PKLR gene. PKD-erythroid cells suffer from an energy imbalance caused by a reduction of erythroid pyruvate kinase (RPK) enzyme activity. PKD is associated with reticulocytosis, splenomegaly and iron overload, and may be life-threatening in severely affected patients. More than 300 disease-causing mutations have been identified as causing PKD. Most mutations are missense mutations, commonly present as compound heterozygous. Therefore, specific correction of these point mutations might be a promising therapy for the treatment of PKD patients. We have explored the potential of precise gene editing for the correction of different PKD-causing mutations, using a combination of single-stranded oligodeoxynucleotides (ssODN) with the CRISPR/Cas9 system. We have designed guide RNAs (gRNAs) and single-strand donor templates to target four different PKD-causing mutations in immortalized patient-derived lymphoblastic cell lines, and we have detected the precise correction in three of these mutations. The frequency of the precise gene editing is variable, while the presence of additional insertions/deletions (InDels) has also been detected. Significantly, we have identified high mutation-specificity for two of the PKD-causing mutations. Our results demonstrate the feasibility of a highly personalized gene-editing therapy to treat point mutations in cells derived from PKD patients.

12.
PLoS One ; 18(4): e0284816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093844

RESUMO

Growth Arrest-Specific 1 (Gas1) is a pleiotropic protein with different functions, in the adult kidney Gas1 acts as an endogenous inhibitor of cell proliferation but it is also necessary for the maintenance and proliferation of Renal Progenitor Cells (RPC) during early development, thus it fulfills important functions in the adult kidney. However, it is not known whether or not Gas1 is expressed during postnatal development, a critical stage for renal maturation. For this reason, the main objective of this work was to characterize the expression pattern of Gas1 in the different regions of the kidney by immunofluorescence and Western blot analysis during the postnatal development of the rat. We found that Gas1 is present and has a differential expression pattern in the various regions of the nephron during postnatal development. We observed that the highest levels of expression of Gas1 occur in the adult, however, Gas1 is also expressed in RPC and interestingly, the expression of RPC markers such as the Neural cell adhesion molecule (NCAM) and Cluster of differentiation 24 (CD24) were found to have an inverse pattern of expression to Gas1 (decreases as the kidney matures) during postnatal renal maturation, this indicates a role for Gas1 in the regulation of renal cell proliferation at this stage of development.


Assuntos
Proteínas de Ciclo Celular , Néfrons , Ratos , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Néfrons/metabolismo , Células-Tronco/metabolismo , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/metabolismo
13.
Biochem Biophys Rep ; 33: 101430, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36714540

RESUMO

Glioblastoma (GBM) is a very aggressive tumor that presents vascularization, necrosis and is resistant to chemotherapy and radiotherapy. Current treatments are not effective eradicating GBM, thus, there is an urgent need to develop novel therapeutic strategies against GBM. AZD5363, AZD8542, curcumin and resveratrol, are widely studied for the treatment of cancer and in the present study we explored the effects of the administration of combined treatments with AZD5363, AZD8542, curcumin or resveratrol on human GBM cells. We found that the combined treatments with AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol inhibit the PI3K/AKT and SHH survival pathways by decreasing the activity of AKT, the reduction of the expression of SMO, pP70S6k, pS6k, GLI1, p21 and p27, and the activation of caspase-3 as a marker of apoptosis. These results provide evidence that the combined treatments AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol have the potential to be an interesting option against GBM.

15.
Data Brief ; 46: 108762, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478688

RESUMO

This article presents a database with geographical and demographic information characterizing the impacts to road and maritime networks, and coastal communities, of a plausible magnitude M9.0 megathrust Cascadia Subduction Zone earthquake scenario near Vancouver Island in British Columbia, Canada. The database consists of a medium and a high impact case associated with the earthquake scenario. The data include the geographical location of communities, ports, and airports/helipads/heliports, the structure of the roads network and their expected damage levels, the resilience level and population size of the communities on Vancouver Island, and the trajectories, expected delays and capacities of ferries and barges. The data originates from government and carriers' open available reports and external datasets, and several impact models. The primary purpose of this database is to support disaster management researchers working to develop and test network models that focus on road repair and restoration, and on the multi-modal distribution of relief supplies to victims. In addition, the data can be used to test heuristic and metaheuristic approaches applied to network models in the context of natural disasters.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36099968

RESUMO

Inflammatory response in the Central Nervous System (CNS) induced by psychostimulants seems to be a crucial factor in the development and maintenance of drug addiction. The ventral hippocampus (vHp) is part of the reward system involved in substance addiction and expresses abundant G protein-coupled receptor 55 (GPR55). This receptor modulates the inflammatory response in vitro and in vivo, but there is no information regarding its anti-inflammatory effects and its impact on psychostimulant consumption. The aim of the present study was to investigate whether vHp GPR55 activation prevents both the inflammatory response induced by amphetamine (AMPH) in the vHp and the AMPH-induced conditioned place preference (A-CPP). Wistar adult male rats with a bilateral cannula into the vHp or intact males were subjected to A-CPP (5 mg/kg). Upon the completion of A-CPP, the vHp was dissected to evaluate IL-1ß and IL-6 expression through RT-PCR, Western blot and immunofluorescence. Our results reveal that AMPH induces both A-CPP and an increase of IL-1ß and IL-6 in the vHp. The GPR55 agonist lysophosphatidylinositol (LPI, 10 µM) infused into the vHp prevented A-CPP and the AMPH-induced IL-1ß increase. CID 16020046 (CID, 10 µM), a selective GPR55 antagonist, abolished LPI effects. To evaluate the effect of the inflammatory response, lipopolysaccharide (LPS, 5 µg/µl) was infused bilaterally into the vHp during A-CPP acquisition. LPS strengthened A-CPP and increased IL-1ß/IL-6 mRNA and protein levels in the vHp. LPS also increased CD68, Iba1, GFAP and vimentin expression. All LPS-induced effects were blocked by LPI. Our results suggest that GPR55 activation in the vHp prevents A-CPP while decreasing the local neuro-inflammatory response. These findings indicate that vHp GPR55 is a crucial factor in preventing the rewarding effects of AMPH due to its capacity to interfere with proinflammatory responses in the vHp.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Ratos , Masculino , Animais , Anfetamina/farmacologia , Lipopolissacarídeos/farmacologia , Vimentina/metabolismo , Vimentina/farmacologia , Interleucina-6/metabolismo , Ratos Wistar , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/metabolismo , Hipocampo/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Anti-Inflamatórios/farmacologia , Receptores de Canabinoides/metabolismo
17.
J Mol Histol ; 53(6): 925-946, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272046

RESUMO

The Growth Arrest-Specific protein 1 (Gas1) has been recently described in kidney as an endogenous inhibitor of cell proliferation in mesangial cells and with an important role in the maintenance of nephron progenitor cells. Furthermore, the expression of Gas1 was demonstrated in NCAM + progenitor parietal cells of Bowman's capsule. Thus, the aim of this study was to analyze the expression of Gas1 in the collecting ducts (CD) of healthy rats and to examine whether high glucose levels modify its expression during the early stages of diabetes in STZ-treated rats. Immunofluorescence reveals that principal cells AQP2 + express Gas1 in both healthy and diabetic conditions. Western blot from enriched fractions of medullary CD suggests that diabetes promotes the increase of Gas1. AQP2 + cells are also positive for the expression of CD24 and CD1133 in diabetic rats. In addition, diabetes modifies the cell morphology in the CD and favors the increase of principal cells (AQP2+/Gas1+), induces a significant decrease of intercalated cells (V-ATPase+/Gas1-) and the presence of intermediate cells (Gas1+/V-ATPase+) which express both principal and intercalated cell markers. The expression of Gas1 in the distal tubules was also determined by immunofluorescence, western blot and ELISA in diabetic rats. The results identify Gas1 as a specific marker of principal cells in healthy and diabetic rats and suggest that diabetes promotes the expression of Gas1. Gas1 may have an important role in the maintenance and differentiation to principal cells in the CD during early stages of diabetes.


Assuntos
Proteínas de Ciclo Celular , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Túbulos Renais Coletores , Animais , Ratos , Adenosina Trifosfatases/metabolismo , Aquaporina 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Proteínas de Ciclo Celular/metabolismo
18.
J Pathol ; 258(3): 312-324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148647

RESUMO

Despite the well-known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin-positive cells were submitted to liver damage induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1-2 days of a DDC-supplemented diet, followed by a signaling switch-off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2-MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro-restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19-positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte-specific EGFR activity acts as a key player in the crosstalk between parenchymal and non-parenchymal hepatic cells, promoting the pro-inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Hepatopatias , Regeneração Hepática , Albuminas/metabolismo , Albuminas/farmacologia , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Descarboxilases de Aminoácido-L-Aromático/farmacologia , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/farmacologia , Receptores ErbB/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Hepatopatias/patologia , Regeneração Hepática/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
CRISPR J ; 5(3): 422-434, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35686982

RESUMO

Knockout mice for human disease-causing genes provide valuable models in which new therapeutic approaches can be tested. Electroporation of genome editing tools into zygotes, in vitro or within oviducts, allows for the generation of targeted mutations in a shorter time. We have generated mouse models deficient in genes involved in metabolic rare diseases (Primary Hyperoxaluria Type 1 Pyruvate Kinase Deficiency) or in a tumor suppressor gene (Rasa1). Pairs of guide RNAs were designed to generate controlled deletions that led to the absence of protein. In vitro or in vivo ribonucleoprotein (RNP) electroporation rendered more than 90% and 30% edited newborn animals, respectively. Mice lines with edited alleles were established and disease hallmarks have been verified in the three models that showed a high consistency of results and validating RNP electroporation into zygotes as an efficient technique for disease modeling without the need to outsource to external facilities.


Assuntos
Edição de Genes , Zigoto , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Camundongos , Camundongos Knockout , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/genética , Zigoto/metabolismo
20.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671096

RESUMO

Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage-associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D-NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D-NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA.


Assuntos
Anemia de Fanconi , Animais , Antígenos CD34 , Anemia de Fanconi/genética , Células-Tronco Hematopoéticas , Ligantes , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA