Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Genet ; 11(7): e1005368, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26162102

RESUMO

Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis.


Assuntos
Proteínas de Ligação a DNA/genética , Infertilidade Masculina/genética , Espermátides/citologia , Espermatócitos/citologia , Espermatogênese/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Adesão Celular/genética , Cílios/genética , Cílios/fisiologia , Modulador de Elemento de Resposta do AMP Cíclico/genética , Citoesqueleto/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição de Fator Regulador X , Espermatogênese/fisiologia , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Transcrição Gênica/genética
2.
PLoS Genet ; 11(3): e1005088, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25811463

RESUMO

MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.


Assuntos
Genes MHC da Classe II , Genes MHC Classe I , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Transativadores/genética , Ativação Transcricional/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genoma , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/imunologia , Regiões Promotoras Genéticas , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transativadores/biossíntese , Transativadores/imunologia , Ativação Transcricional/imunologia
3.
Nucleic Acids Res ; 42(15): 9641-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25104025

RESUMO

The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes--including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis--underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repression.


Assuntos
Células Dendríticas/metabolismo , Inativação Gênica , Proteínas Nucleares/genética , Transativadores/genética , Transcrição Gênica , Animais , Humanos , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
4.
J Immunol ; 193(4): 1690-700, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25009204

RESUMO

Arginine, a semiessential amino acid implicated in diverse cellular processes, is a substrate for two arginases-Arg1 and Arg2-having different expression patterns and functions. Although appropriately regulated Arg1 expression is critical for immune responses, this has not been documented for Arg2. We show that Arg2 is the dominant enzyme in dendritic cells (DCs) and is repressed by microRNA-155 (miR155) during their maturation. miR155 is known to be strongly induced in various mouse and human DC subsets in response to diverse maturation signals, and miR155-deficient DCs exhibit an impaired ability to induce Ag-specific T cell responses. By means of expression profiling studies, we identified Arg2 mRNA as a novel miR155 target in mouse DCs. Abnormally elevated levels of Arg2 expression and activity were observed in activated miR155-deficient DCs. Conversely, overexpression of miR155 inhibited Arg2 expression. Bioinformatic and functional analyses confirmed that Arg2 mRNA is a direct target of miR155. Finally, in vitro and in vivo functional assays using DCs exhibiting deregulated Arg2 expression indicated that Arg2-mediated arginine depletion in the extracellular milieu impairs T cell proliferation. These results indicate that miR155-induced repression of Arg2 expression is critical for the ability of DCs to drive T cell activation by controlling arginine availability in the extracellular environment.


Assuntos
Arginase/biossíntese , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/enzimologia , Ativação Linfocitária/imunologia , MicroRNAs/genética , Animais , Arginase/antagonistas & inibidores , Arginase/genética , Arginina/metabolismo , Proliferação de Células , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética
5.
J Immunol ; 188(8): 3820-8, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22412192

RESUMO

Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflammatory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-κB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5(Δ/Δ)). In this article we show that these animals exhibit slightly decreased CD8(+) T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5(Δ/Δ) macrophages efficiently primed CD8(+) T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5(Δ/Δ) lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Hence, loss of NLRC5 expression represents an advantage for evading CD8(+) T cell-mediated elimination by downmodulation of MHC I levels-a mechanism that may be exploited by transformed cells. Our data show that NLRC5 acts as a key transcriptional regulator of MHC I in lymphocytes and support an essential role for NLRs in directing not only innate but also adaptive immune responses.


Assuntos
Genes MHC Classe I , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Linfócitos T Citotóxicos/imunologia , Imunidade Adaptativa , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Medula Óssea/imunologia , Diferenciação Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/imunologia , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , Linfócitos T Citotóxicos/citologia
6.
Blood ; 117(17): 4490-500, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21385848

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate target mRNAs by binding to their 3' untranslated regions. There is growing evidence that microRNA-155 (miR155) modulates gene expression in various cell types of the immune system and is a prominent player in the regulation of innate and adaptive immune responses. To define the role of miR155 in dendritic cells (DCs) we performed a detailed analysis of its expression and function in human and mouse DCs. A strong increase in miR155 expression was found to be a general and evolutionarily conserved feature associated with the activation of DCs by diverse maturation stimuli in all DC subtypes tested. Analysis of miR155-deficient DCs demonstrated that miR155 induction is required for efficient DC maturation and is critical for the ability of DCs to promote antigen-specific T-cell activation. Expression-profiling studies performed with miR155(-/-) DCs and DCs overexpressing miR155, combined with functional assays, revealed that the mRNA encoding the transcription factor c-Fos is a direct target of miR155. Finally, all of the phenotypic and functional defects exhibited by miR155(-/-) DCs could be reproduced by deregulated c-Fos expression. These results indicate that silencing of c-Fos expression by miR155 is a conserved process that is required for DC maturation and function.


Assuntos
Células Dendríticas/fisiologia , Inativação Gênica/imunologia , MicroRNAs/imunologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Células Dendríticas/citologia , Evolução Molecular , Humanos , Camundongos , Camundongos Mutantes , MicroRNAs/genética , Monócitos/citologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia
7.
Arthritis Res Ther ; 12(2): R73, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20429888

RESUMO

INTRODUCTION: Extracellular matrix (ECM) turnover is controlled by the synthetic rate of matrix proteins, including type I collagen, and their enzymatic degradation by matrix metalloproteinases (MMPs). Fibrosis is characterized by an unbalanced accumulation of ECM leading to organ dysfunction as observed in systemic sclerosis. We previously reported that proteasome inhibition (PI) in vitro decreases type I collagen and enhances MMP-1 production by human fibroblasts, thus favoring an antifibrotic fibroblast phenotype. These effects were dominant over the pro-fibrotic phenotype induced by transforming growth factor (TGF)-beta. Here we investigate the molecular events responsible for the anti-fibrotic phenotype induced in fibroblasts by the proteasome inhibitor bortezomib. METHODS: The steady-state mRNA levels of COL1A1, COL1A2, TIMP-1, MMP-1, and MMP-2 were assessed by quantitative PCR in human dermal fibroblasts cultured in the presence of TGF-beta, bortezomib, or both. Transient fibroblast transfection was performed with wild-type and mutated COL1A1 and MMP-1 promoters. Chromatin immunoprecipitation, electrophoretic mobility shift assay (EMSA), and DNA pull-down assays were used to assess the binding of c-Jun, SP1, AP2, and Smad2 transcription factors. Immunoblotting and immunofluorescent microscopy were performed for identifying phosphorylated transcription factors and their cellular localization. RESULTS: Bortezomib decreased the steady-state mRNA levels of COL1A1 and COL1A2, and abrogated SP1 binding to the promoter of COL1A2 in both untreated and TGF-beta-activated fibroblasts. Reduced COL1A2 expression was not due to altered TGF-beta-induced Smad2 phosphorylation, nuclear translocation, or binding to the COL1A2 promoter. In contrast to collagen, bortezomib specifically increased the steady-state mRNA levels of MMP-1 and enhanced the binding of c-Jun to the promoter of MMP-1. Furthermore, disruption of the proximal AP-1-binding site in the promoter of MMP-1 severely impaired MMP-1 transcription in response to bortezomib. CONCLUSIONS: By altering the binding of at least two transcription factors, c-Jun and SP1, proteasome inhibition results in increased production of MMP-1 and decreased synthesis of type I collagen in human dermal fibroblasts. Thus, the antifibrotic phenotype observed in fibroblasts submitted to proteasome inhibition results from profound modifications in the binding of key transcription factors. This provides a novel rationale for assessing the potential of drugs targeting the proteasome for their anti-fibrotic properties.


Assuntos
Ácidos Borônicos/farmacologia , Colágeno/genética , Fibroblastos/efeitos dos fármacos , Metaloproteinase 1 da Matriz/genética , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Bortezomib , Linhagem Celular , Colágeno/metabolismo , Colágeno Tipo I , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Imunoglobulinas/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/metabolismo , Pele/citologia
8.
Diabetes ; 59(7): 1674-85, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20413507

RESUMO

OBJECTIVE: Pancreatic islets of perinatal mice lacking the transcription factor Rfx3 exhibit a marked reduction in insulin-producing beta-cells. The objective of this work was to unravel the cellular and molecular mechanisms underlying this deficiency. RESEARCH DESIGN AND METHODS: Immunofluorescence studies and quantitative RT-PCR experiments were used to study the emergence of insulin-positive cells, the expression of transcription factors implicated in the differentiation of beta-cells from endocrine progenitors, and the expression of mature beta-cell markers during development in Rfx3(-/-) and pancreas-specific Rfx3-knockout mice. RNA interference experiments were performed to document the consequences of downregulating Rfx3 expression in Min6 beta-cells. Quantitative chromatin immunoprecipitation (ChIP), ChIP sequencing, and bandshift experiments were used to identify Rfx3 target genes. RESULTS: Reduced development of insulin-positive cells in Rfx3(-/-) mice was not due to deficiencies in endocrine progenitors or beta-lineage specification, but reflected the accumulation of insulin-positive beta-cell precursors and defective beta-cells exhibiting reduced insulin, Glut-2, and Gck expression. Similar incompletely differentiated beta-cells developed in pancreas-specific Rfx3-deficient embryos. Defective beta-cells lacking Glut-2 and Gck expression dominate in Rfx3-deficent adults, leading to glucose intolerance. Attenuated Glut-2 and glucokinase expression, and impaired glucose-stimulated insulin secretion, were also induced by RNA interference-mediated inhibition of Rfx3 expression in Min6 cells. Finally, Rfx3 was found to bind in Min6 cells and human islets to two well-known regulatory sequences, Pal-1 and Pal-2, in the neuroendocrine promoter of the glucokinase gene. CONCLUSIONS: Our results show that Rfx3 is required for the differentiation and function of mature beta-cells and regulates the beta-cell promoter of the glucokinase gene.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Glucoquinase/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Análise de Variância , Animais , Proteínas de Ligação a DNA/genética , Imunofluorescência , Glucoquinase/genética , Insulina/genética , Insulina/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Interferência de RNA , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
9.
J Immunol ; 183(4): 2545-53, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19620312

RESUMO

Classical and nonclassical MHC class II (MHCII) genes are coregulated by the transcription factor RFX (regulatory factor X) and the transcriptional coactivator CIITA. RFX coordinates the assembly of a multiprotein "enhanceosome" complex on MHCII promoters. This enhanceosome serves as a docking site for the binding of CIITA. Whereas the role of the enhanceosome in recruiting CIITA is well established, little is known about its CIITA-independent functions. A novel role of the enhanceosome was revealed by the analysis of HLA-DOA expression in human MHCII-negative B cell lines lacking RFX or CIITA. HLA-DOA was found to be reactivated by complementation of CIITA-deficient but not RFX-deficient B cells. Silencing of HLA-DOA was associated with DNA methylation at its promoter, and was relieved by the demethylating agent 5-azacytidine. Surprisingly, DNA methylation was also established at the HLA-DRA and HLA-DQB loci in RFX-deficient cells. This was a direct consequence of the absence of RFX, as it could be reversed by restoring RFX function. DNA methylation at the HLA-DOA, HLA-DRA, and HLA-DQB promoters was observed in RFX-deficient B cells and fibroblasts, but not in CIITA-deficient B cells and fibroblasts, or in wild-type fibroblasts, which lack CIITA expression. These results indicate that RFX and/or enhanceosome assembly plays a key CIITA-independent role in protecting MHCII promoters against DNA methylation. This function is likely to be crucial for retaining MHCII genes in an open chromatin configuration permissive for activation in MHCII-negative cells, such as the precursors of APC and nonprofessional APC before induction with IFN-gamma.


Assuntos
Metilação de DNA/imunologia , Proteínas de Ligação a DNA/fisiologia , Inativação Gênica/imunologia , Antígenos HLA-D/biossíntese , Antígenos HLA-D/genética , Fatores de Transcrição/fisiologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/imunologia , Humanos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Regiões Promotoras Genéticas/imunologia , Fatores de Transcrição de Fator Regulador X , Transativadores/deficiência , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
10.
Nucleic Acids Res ; 37(8): 2514-28, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19264803

RESUMO

Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequence.


Assuntos
Genes MHC da Classe II , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Linfócitos B/imunologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Antígenos HLA-DR/genética , Cadeias alfa de HLA-DR , Humanos , Interferon gama/farmacologia
11.
PLoS Genet ; 4(4): e1000058, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18437201

RESUMO

The class II trans-activator CIITA is a transcriptional co-activator required for the expression of Major Histocompatibility Complex (MHC) genes. Although the latter function is well established, the global target-gene specificity of CIITA had not been defined. We therefore generated a comprehensive list of its target genes by performing genome-wide scans employing four different approaches designed to identify promoters that are occupied by CIITA in two key antigen presenting cells, B cells and dendritic cells. Surprisingly, in addition to MHC genes, only nine new targets were identified and validated by extensive functional and expression analysis. Seven of these genes are known or likely to function in processes contributing to MHC-mediated antigen presentation. The remaining two are of unknown function. CIITA is thus uniquely dedicated for genes implicated in antigen presentation. The finding that CIITA regulates such a highly focused gene expression module sets it apart from all other transcription factors, for which large-scale binding-site mapping has indicated that they exert pleiotropic functions and regulate large numbers of genes.


Assuntos
Apresentação de Antígeno/genética , Genes MHC da Classe II , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Imunoprecipitação da Cromatina , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Elementos Facilitadores Genéticos , Humanos , Interferon gama/farmacologia , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes , Fatores de Transcrição de Fator Regulador X , Transativadores/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
12.
Nucleic Acids Res ; 35(10): 3431-41, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17478518

RESUMO

Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5' end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation.


Assuntos
Genes MHC da Classe II , Antígenos HLA-DR/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Ativação Transcricional , Região 5'-Flanqueadora , Acetilação , Linhagem Celular , Antígenos HLA-DR/biossíntese , Cadeias alfa de HLA-DR , Humanos , Interferon gama/farmacologia , Cinética , Metilação
13.
Nucleic Acids Res ; 35(2): 595-605, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17175541

RESUMO

The small GTPase RAB4 regulates endocytic recycling, a process that contributes to Major Histocompatibility Complex (MHC)-mediated antigen presentation by specialized antigen presenting cells (APC) of the immune system. The gene encoding the RAB4B isoform of RAB4 was singled out by two complementary genome-wide screens. One of these consisted of a computer scan to identify genes containing characteristic MHC class II-related regulatory sequences. The second was the use of chromatin immunoprecipitation coupled to microarrays (ChIP-on-chip) to identify novel targets of a transcriptional co-activator called the MHC class II transactivator (CIITA). We show that the RAB4B gene is regulated by a typical MHC class II-like enhancer that is controlled directly by both CIITA and the multiprotein transcription factor complex known as the MHC class II enhanceosome. RAB4B expression is thus activated by the same regulatory machinery that is known to be essential for the expression of MHC class II genes. This molecular link between the transcriptional activation of RAB4B and MHC class II genes implies that APC boost their antigen presentation capacity by increasing RAB4-mediated endocytic recycling.


Assuntos
Elementos Facilitadores Genéticos , Genes MHC da Classe II , Ativação Transcricional , Proteínas rab4 de Ligação ao GTP/genética , Sítios de Ligação , Células Cultivadas , Proteínas de Ligação a DNA , Células Dendríticas/imunologia , Endocitose , Genômica , Humanos , Interferon gama/farmacologia , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição de Fator Regulador X , Transativadores/metabolismo , Fatores de Transcrição , Proteínas rab4 de Ligação ao GTP/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA