Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Chem Biol ; 15(12): 3124-3132, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32459465

RESUMO

During the hepatitis B virus lifecycle, 120 copies of homodimeric capsid protein assemble around a copy of reverse transcriptase and viral RNA and go on to produce an infectious virion. Assembly needs to be tightly regulated by protein conformational change to ensure symmetry, fidelity, and reproducibility. Here, we show that structures at the intradimer interface regulate conformational changes at the distal interdimer interface and so regulate assembly. A pair of interacting charged residues, D78 from each monomer, conspicuously located at the top of a four-helix bundle that forms the intradimer interface, were mutated to serine to disrupt communication between the two monomers. The mutation slowed assembly and destabilized the dimer to thermal and chemical denaturation. Mutant dimers showed evidence of transient partial unfolding based on the appearance of new proteolytically sensitive sites. Though the mutant dimer was less stable, the resulting capsids were as stable as the wildtype, based on assembly and thermal denaturation studies. Cryo-EM image reconstructions of capsid indicated that the subunits adopted an "open" state more usually associated with a free dimer and that the spike tips were either disordered or highly flexible. Molecular dynamics simulations provide mechanistic explanations for these results, suggesting that D78 stabilizes helix 4a, which forms part of the intradimer interface, by capping its N-terminus and hydrogen-bonding to nearby residues, whereas the D78S mutation disrupts these interactions, leading to partial unwinding of helix 4a. This in turn weakens the connection from helix 4 and the intradimer interface to helix 5, which forms the interdimer interface.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Vírus da Hepatite B/química , Dimerização , Vírus da Hepatite B/fisiologia , Simulação de Dinâmica Molecular , Conformação Proteica , Reprodutibilidade dos Testes
2.
Dela J Public Health ; 6(2): 6-9, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34467099

RESUMO

The Perilla/Hadden-Perilla research team at the University of Delaware presents an overview of computational structural biology, their efforts to model the SARS-CoV-2 viral particle, and their perspective on how their work and training endeavors can contribute to public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA