Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192708

RESUMO

Synbiotics are the specific mixtures of prebiotics with probiotics intended to give health benefits to the host by stabilizing and supporting the gut microbiota.The prebiotic substance used in the synbiotics selectively favors the growth and metabolite production of probiotics. Gut microbiome dysbiosis may lead to generation and progression of various chronic diseases. Synbiotics act synergistically to modulate the gut ecosystem for improvement of metabolic health of the host. Probiotics have been found promising against various diseases being safer, effective, as an alternative or combinatorial therapy. Specific combinations of probiotics with suitable prebiotic substrate as synbiotics, may be the more effective therapeutic agents that can provide all benefits of probiotics as well as prebiotics. Though, effective combinations, dosage, mechanism of action, safety, cost effectiveness and other clinical investigations are required to be established along with other relevant aspects. Synbiotics have the potential to be functional food of importance in future. Present review summarizes the mechanistic overview of synbiotics related to gut microbiota, therapeutic potential and promising health benefits for human illnesses according to the available literature. In present scenario, synbiotics are more promising future alternatives as therapeutics to maintain healthy microbiota inside the host gut which directly affects the onset or development ofrelated disorders or diseases.

2.
Phytomedicine ; 121: 155100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801892

RESUMO

BACKGROUND: The liver is a well-known player in the metabolism and removal of drugs. Drug metabolizing enzymes in the liver detoxify drugs and xenobiotics, ultimately leading to the acquisition of homeostasis. However, liver toxicity and cell damage are not only related to the nature and dosage of a particular drug but are also influenced by other factors such as aging, immune status, environmental contaminants, microbial metabolites, gender, obesity, and expression of individual genes Furthermore, factors such as drugs, alcohol, and environmental contaminants could induce oxidative stress, thereby impairing the regenerative potential of the liver and causing several diseases. Persons suffering from other ailments and those with comorbidities are found to be more prone to drug-induced toxicities. Moreover, drug composition and drug-drug interactions could further aggravate the risk of drug-induced hepatotoxicity. A plethora of mechanisms are responsible for initiating liver cell damage and further aggravating liver cell injury, followed by impairment of homeostasis, ultimately leading to the generation of reactive oxygen species, immune-suppression, and oxidative stress. OBJECTIVE: To summarize the potential of phytochemicals and natural bioactive compounds to treat hepatotoxicity and other liver diseases. STUDY DESIGN: A deductive qualitative content analysis approach was employed to assess the overall outcomes of the research and review articles pertaining to hepatoprotection induced by natural drugs, along with analysis of the interventions. METHODS: An extensive literature search of bibliographic databases, including Web of Science, PUBMED, SCOPUS, GOOGLE SCHOLAR, etc., was carried out to understand the role of hepatoprotective effects of natural drugs. RESULTS: Bioactive natural products, including curcumin, resveratrol, etc., have been seen as neutralizing agents against the side effects induced by the drugs. Moreover, these natural products are dietary and are readily available; thus, could be supplemented along with drugs to reduce toxicity to cells. Probiotics, prebiotics, and synbiotics have shown promise of improving overall liver functioning, and these should be evaluated more extensively for their hepatoprotective potential. Therefore, selecting an appropriate natural product or a bioactive compound that is free of toxicity and offers a reliable solution for drug-induced liver toxicity is quintessential. CONCLUSIONS: The current review highlights the role of natural bioactive products in neutralizing drug-induced hepatotoxicity. Efforts have been made to delineate the possible underlying mechanism associated with the neutralization process.


Assuntos
Produtos Biológicos , Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Humanos , Hepatopatias/tratamento farmacológico , Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Produtos Biológicos/farmacologia
3.
Biotechnol Appl Biochem ; 70(6): 2002-2016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37574464

RESUMO

Cancer is still a major challenge for humans. In recent years, researchers have focused on plant-based metabolites as a safe, efficient, alternative or combinatorial, as well as cost-effective preventive strategy against carcinogenesis. Mung bean is an important nutritious legume, and known for providing various health benefits due to various bioactive phytochemicals and easily digestible proteins. Regular intake of mung bean helps to regulate metabolism by affecting the growth and survival of good microbes in the host gut. Mung bean has also been reported to have anti-inflammatory, antioxidant, antiproliferative, and immunomodulatory properties. These properties may possess the preventive potential of mung bean against carcinogenesis. Bibliographic databases for peer-reviewed research literature were searched through a structured conceptual approach using focused review questions on mung beans, anticancer, therapeutics, and functional foods along with inclusion/exclusion criteria. For the appraisal of the quality of retrieved articles, standard tools were employed. A deductive qualitative content analysis methodology further led us to analyze outcomes of the research and review articles. The present review provides recent updates on the anticancer potential of mung bean and the possible mechanism of action thereof to prevent carcinogenesis and metastasis. Extensive research on the active metabolites and mechanisms of action is required to establish the anticancer potential of mung bean. Keeping the above facts in view, mung bean should be investigated for its bioactive compounds, to be considered as functional food of the future.


Assuntos
Fabaceae , Vigna , Humanos , Vigna/química , Vigna/metabolismo , Alimento Funcional , Antioxidantes/química , Carcinogênese
5.
Curr Pharm Biotechnol ; 24(10): 1213-1227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36284383

RESUMO

BACKGROUND: Small, non-coding microRNAs, usually of 20-25 nucleotides, are known to regulate the post-transcriptional gene expression, which has a significant role in human biological processes, including immune-biogenesis, homeostasis and infection control as differential expression of such miRNAs is responsible for fine-tuning the organismic development. METHODS: A search of bibliographic databases was carried out with a focused question on microRNA- Disease Prediction. A deductive qualitative content analysis approach was employed to assess the research's overall outcomes, review articles on prediction tools in miRNA-Diseases, and analyse the interventions. RESULTS: Diagnosis and therapeutics of diseases and miRNA prediction methods hold importance in identifying the regulatory mechanisms. Collections of efficient miRNA prediction methods to identify miRNA-mRNA-disease regulatory relationships have been presented through this review, consolidating the potential of miRNAs as a diagnostic and prognostic biomarker of multiple diseases, including COVID-19. CONCLUSION: The role of miRNA in the aetiology and pathogenesis of wide-range of pathologies, including viral, bacterial to chronic diseases such as cancer, is quite feasible through the modern tools in bioinformatics which has been elaborated focusing upon miRNA-disease prediction methods and their application potential establishing miRNAs as a robust and reliable biomarker in clinicomedical studies.


Assuntos
COVID-19 , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , COVID-19/diagnóstico , COVID-19/genética , Neoplasias/genética , RNA Mensageiro/genética , Biologia Computacional/métodos , Teste para COVID-19
6.
Saudi J Biol Sci ; 29(12): 103464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36199518

RESUMO

The effect of saline irrigation (ECiw 6 dS m-1 and 9 dS m-1) on the roots of Cicer arietinum L. genotypes was examined at morpho-physiological, biochemical and molecular levels. Reduction in root growth due to salinity was observed, but less effect was seen on the roots of genotypes KWR 108, ICCV 10, CSG 8962, and S7 as compared to the other genotypes. Cell turgor was maintained in tolerant genotypes through optimum water relations and osmoprotectants (proline and total soluble sugars) than the sensitive cultivars. Salinity caused oxidative stress as increased hydrogen peroxide and malondialdehyde were noticed, where low accumulation was observed in tolerant genotypes due to the higher activity of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and peroxidase). Na+/K+ ratio increased, but more increment was reported in sensitive cultivars. Gene expression studies depicted that genes encoding pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase got upregulated and that of proline dehydrogenase was downregulated and more fold change with respect to control was in the salt tolerant check CSG 8962 and the genotype KWR 108. Higher expression of the genes encoding reactive oxygen species scavenging enzymes namely, superoxide dismutase, catalase, peroxidase, and those involved in the ascorbate-glutathione cycle was noticed in KWR 108 and CSG 8962 than ICC 4463. Enhanced expression of sodium transporter HKT1 due to salinity can be correlated with ion homeostasis maintenance. Cumulative effects of osmolytes, enzymatic antioxidants and maintaining ion homeostasis in root enable chickpea plants to survive in saline environments.

7.
Semin Cancer Biol ; 83: 422-440, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33766649

RESUMO

Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.


Assuntos
Epigênese Genética , Neoplasias , Metilação de DNA , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Biotechnol Appl Biochem ; 69(5): 2028-2045, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586691

RESUMO

Phytochemicals are the natural biomolecules produced by plants via primary or secondary metabolism, which have been known to have many potential health benefits to human beings. Flavonoids or phytoestrogens constitute a major group of such phytochemicals widely available in variety of vegetables, fruits, herbs, tea, and so forth, implicated in a variety of bio-pharmacological and biochemical activities against diseases including bacterial, viral, cancer, inflammatory, and autoimmune disorders. More recently, these natural biomolecules have been shown to have effective antiviral properties via therapeutically active ingredients within them, acting at different stages of infection. Current review emphasizes upon the role of these flavonoids in physiological functions, prevention and treatment of viral diseases. More so the review focuses specifically upon the antiviral effects exhibited by these natural biomolecules against RNA viruses including coronaviruses. Furthermore, the article would certainly provide a lead to the scientific community for the effective therapeutic antiviral use of flavonoids using potential cost-effective tools for improvement of the pharmacokinetics, bioavailability, and biodistribution of such compounds for the concrete action along with the promotion of human health.


Assuntos
Antivirais , Compostos Fitoquímicos , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Distribuição Tecidual , Compostos Fitoquímicos/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Extratos Vegetais/química , Polifenóis
9.
Saudi J Biol Sci ; 28(4): 2510-2517, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911962

RESUMO

In the era of climate change, decreased precipitation and increased evapo-transpiration hampers the yield of several cereal crops along with the soil salinity and poor ground water resource. Wheat being the moderately tolerant crop face many challenges in the arid and semi-arid regions under irrigated agriculture. In view of this, the study was planned to explore the potential of durum wheat genotypes under salinity on the basis of physiological traits. Experiment was designed as RBD in three replications to evaluate 15 wheat genotypes with moderate saline irrigation (ECiw - 6 dS m-1) and extreme saline irrigation (ECiw - 10 dS m-1) along with one set of control (Best available water). Different physiological traits such as water potential (ψp), osmotic potential (ψs), relative water content (RWC), Na+ and K+ content were recorded in roots as well as shoots at the reproductive stage whereas photosynthetic rate and chlorophyll content were measured in the flag leaves. A significant variability (p < 0.001) was noted among the genotypes under different stress environments and it was observed that durum genotype HI 8728 and HI 8737 showed less reduction in plant water traits (RWC, ψp and ψs) than the salinity tolerant checks of bread wheat KRL 99 and KRL 3-4. HD 4728 and HI 8708 maintained higher photosynthetic rate as well as higher chlorophyll content under the extreme salinity level of ECiw - 10 dSm-1. No significant differences were found in root Na+ in genotypes KRL 99 (3.17g), KRL 3-4 (3.34g) and HI 8737 (3.41g) while in shoots, lowest accumulation was seen in KRL 99, MACS 3949 and KRL 3-4 at ECiw - 10 dSm-1. The mean range of K+ content was 7.60-9.74% in roots and 4.21-6.61% in shoots under control environment which decreased to 50.77% in roots and 46.05% in shoots under extreme salinity condition of ECiw - 10 dSm-1. At ECiw - 10 dSm-1, KRL 99 maintained highest K+/Na+ in both root and shoot followed by KRL 3-4, HI 8737, MACS 3949, HD 4728 in roots and MACS 3949, KRL 3-4, MACS 4020, HD 4758, MACS 3972 and HI 8713 in shoots. The differential response of durum wheat genotypes under salinity particularly for physiological traits, confer their adaptability towards stress environments and exhibit their potential as genetic sources in breeding programs for improving salt stress tolerance.

10.
Semin Cancer Biol ; 70: 61-70, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32693015

RESUMO

Cancer being a multiplex disease which involves many genomic and physiological alterations that occur consistently in the cancerous tissue, making the treatment and management of the disease even more complicated. The human gut microbiota (GM) harbors collective genomes of microbes comprising of trillions of bacteria along with fungi, archaea, and viruses that have the tendency to affect the development and progression of cancer. Moreover, inter-microbial interactions, diversity and distinct differences among the GM populations could influence the course of disease, making the microbiome an ideal target or to be modulated in such a way so as to improve cancer therapeutics with better efficacy and reduced toxicity. Current review focuses upon exploring the association of gut microbiota with the progression of cancer for which a structured search of bibliographic databases for peer-reviewed research literature has been carried out using focused review questions and inclusion/exclusion criteria. Through this review one could envisage a wide-spectrum role of microbiota in maintaining host metabolism, immune homeostasis paving the way for an anticancer diagnostic and therapeutic solution that has the potential to counter the menace of anti-cancer drug resistance as well.


Assuntos
Antineoplásicos/administração & dosagem , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal , Neoplasias/tratamento farmacológico , Prebióticos/administração & dosagem , Animais , Disbiose/imunologia , Disbiose/microbiologia , Humanos , Neoplasias/imunologia , Neoplasias/microbiologia
11.
Semin Cancer Biol ; 70: 24-36, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32574811

RESUMO

The gut microbiota composition and dietary factors in our food along with the use of prebiotics and probiotics play an important role in the maintenance of human health. A well-balanced gut microbial population is necessary for the host and the microbiota to coexist in a mutually beneficial relationship maintaining homeostasis. Considering the potential of modern technological tools, it is possible nowadays to engineer prebiotic bacteria having a positive influence on the microbiome on one hand while on the other one may have the ease to get rid of the pathogenic proinflammatory microbes or elements causing dysbiosis. Past studies have seen that in cancer there is a loss of inter-microbial relationship cum interactions within microbiota members, the metabolic products produced by them and the host immune system in a microbial ecosystem, leading to dysbiosis. Current review highlights the importance of probiotics in the management of cancer by bringing together majority of the studies together at a single platform and moreover, stresses upon the need to maintain eubiosis in order to evade and inhibit the progression of cancer. Continuous expansion in knowledge about probiotics, their effect on various cancers and the underlying mechanism of action has raised the global scientific interest towards their possible use against different cancers. Furthermore, the article emphasizes upon the need to explore newer therapeutic targets comprising of the microbiome which could further pave the way to the concept of personalized medicines for various kinds of malignancies so as to derive maximum benefits of a treatment modality and to preserve the microbial homeostasis.


Assuntos
Antineoplásicos/administração & dosagem , Ecologia , Microbioma Gastrointestinal , Neoplasias/tratamento farmacológico , Prebióticos/administração & dosagem , Animais , Humanos , Neoplasias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA