Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Pathol ; 34(3): e13228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38012085

RESUMO

The current state-of-the-art analysis of central nervous system (CNS) tumors through DNA methylation profiling relies on the tumor classifier developed by Capper and colleagues, which centrally harnesses DNA methylation data provided by users. Here, we present a distributed-computing-based approach for CNS tumor classification that achieves a comparable performance to centralized systems while safeguarding privacy. We utilize the t-distributed neighborhood embedding (t-SNE) model for dimensionality reduction and visualization of tumor classification results in two-dimensional graphs in a distributed approach across multiple sites (DistSNE). DistSNE provides an intuitive web interface (https://gin-tsne.med.uni-giessen.de) for user-friendly local data management and federated methylome-based tumor classification calculations for multiple collaborators in a DataSHIELD environment. The freely accessible web interface supports convenient data upload, result review, and summary report generation. Importantly, increasing sample size as achieved through distributed access to additional datasets allows DistSNE to improve cluster analysis and enhance predictive power. Collectively, DistSNE enables a simple and fast classification of CNS tumors using large-scale methylation data from distributed sources, while maintaining the privacy and allowing easy and flexible network expansion to other institutes. This approach holds great potential for advancing human brain tumor classification and fostering collaborative precision medicine in neuro-oncology.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Humanos , Metilação de DNA , Neoplasias do Sistema Nervoso Central/genética , Neoplasias Encefálicas/genética
2.
Cancers (Basel) ; 15(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958364

RESUMO

Convolutional neural networks (CNNs) are becoming increasingly valuable tools for advanced computational histopathology, promoting precision medicine through exceptional visual decoding abilities. Meningiomas, the most prevalent primary intracranial tumors, necessitate accurate grading and classification for informed clinical decision-making. Recently, DNA methylation-based molecular classification of meningiomas has proven to be more effective in predicting tumor recurrence than traditional histopathological methods. However, DNA methylation profiling is expensive, labor-intensive, and not widely accessible. Consequently, a digital histology-based prediction of DNA methylation classes would be advantageous, complementing molecular classification. In this study, we developed and rigorously assessed an attention-based multiple-instance deep neural network for predicting meningioma methylation classes using tumor methylome data from 142 (+51) patients and corresponding hematoxylin-eosin-stained histological sections. Pairwise analysis of sample cohorts from three meningioma methylation classes demonstrated high accuracy in two combinations. The performance of our approach was validated using an independent set of 51 meningioma patient samples. Importantly, attention map visualization revealed that the algorithm primarily focuses on tumor regions deemed significant by neuropathologists, offering insights into the decision-making process of the CNN. Our findings highlight the capacity of CNNs to effectively harness phenotypic information from histological sections through computerized images for precision medicine. Notably, this study is the first demonstration of predicting clinically relevant DNA methylome information using computer vision applied to standard histopathology. The introduced AI framework holds great potential in supporting, augmenting, and expediting meningioma classification in the future.

3.
Bioinform Adv ; 2(1): vbac009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699395

RESUMO

Summary: In the era of next generation sequencing and beyond, the Sanger technique is still widely used for variant verification of inconclusive or ambiguous high-throughput sequencing results or as a low-cost molecular genetical analysis tool for single targets in many fields of study. Many analysis steps need time-consuming manual intervention. Therefore, we present here a pipeline-capable high-throughput solution with an optional Shiny web interface, that provides a binary mutation decision of hotspots together with plotted chromatograms including annotations via flat files. Availability and implementation: SangeR is freely available at https://github.com/Neuropathology-Giessen/SangeR and https://hub.docker.com/repository/docker/kaischmid/sange_r. Contact: Kai.Schmid@patho.med.uni-giessen.de or Daniel.Amsel@patho.med.uni-giessen.de. Supplementary information: Supplementary data are available at Bioinformatics online.

4.
Int J Comput Assist Radiol Surg ; 15(7): 1137-1145, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32440956

RESUMO

PURPOSE: Accurate estimation of the position and orientation (pose) of surgical instruments is crucial for delicate minimally invasive temporal bone surgery. Current techniques lack in accuracy and/or line-of-sight constraints (conventional tracking systems) or expose the patient to prohibitive ionizing radiation (intra-operative CT). A possible solution is to capture the instrument with a c-arm at irregular intervals and recover the pose from the image. METHODS: i3PosNet infers the position and orientation of instruments from images using a pose estimation network. Said framework considers localized patches and outputs pseudo-landmarks. The pose is reconstructed from pseudo-landmarks by geometric considerations. RESULTS: We show i3PosNet reaches errors [Formula: see text] mm. It outperforms conventional image registration-based approaches reducing average and maximum errors by at least two thirds. i3PosNet trained on synthetic images generalizes to real X-rays without any further adaptation. CONCLUSION: The translation of deep learning-based methods to surgical applications is difficult, because large representative datasets for training and testing are not available. This work empirically shows sub-millimeter pose estimation trained solely based on synthetic training data.


Assuntos
Procedimentos Cirúrgicos Otológicos/métodos , Cirurgia Assistida por Computador/métodos , Osso Temporal/cirurgia , Humanos , Imageamento Tridimensional/métodos , Procedimentos Cirúrgicos Minimamente Invasivos , Radiografia , Osso Temporal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA