Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant J ; 119(1): 508-524, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678521

RESUMO

L-Arabinose (L-Ara) is a plant-specific sugar found in cell wall polysaccharides, proteoglycans, glycoproteins, and small glycoconjugates, which play physiologically important roles in cell proliferation and other essential cellular processes. L-Ara is synthesized as UDP-L-arabinose (UDP-L-Ara) from UDP-xylose (UDP-Xyl) by UDP-Xyl 4-epimerases (UXEs), a type of de novo synthesis of L-Ara unique to plants. In Arabidopsis, the Golgi-localized UXE AtMUR4 is the main contributor to UDP-L-Ara synthesis. However, cytosolic bifunctional UDP-glucose 4-epimerases (UGEs) with UXE activity, AtUGE1, and AtUGE3 also catalyze this reaction. For the present study, we first examined the physiological importance of bifunctional UGEs in Arabidopsis. The uge1 and uge3 mutants enhanced the dwarf phenotype of mur4 and further reduced the L-Ara content in cell walls, suggesting that bifunctional UGEs contribute to UDP-L-Ara synthesis. Through the introduction of point mutations exchanging corresponding amino acid residues between AtUGE1 with high UXE activity and AtUGE2 with low UXE activity, two mutations that increase relative UXE activity of AtUGE2 were identified. The crystal structures of AtUGE2 in complex forms with NAD+ and NAD+/UDP revealed that the UDP-binding domain of AtUGE2 has a more closed conformation and smaller sugar-binding site than bacterial and mammalian UGEs, suggesting that plant UGEs have the appropriate size and shape for binding UDP-Xyl and UDP-L-Ara to exhibit UXE activity. The presented results suggest that the capacity for cytosolic synthesis of UDP-L-Ara was acquired by the small sugar-binding site and several mutations of UGEs, enabling diversified utilization of L-Ara in seed plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Citosol , UDPglucose 4-Epimerase , Açúcares de Uridina Difosfato , Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Citosol/enzimologia , Açúcares de Uridina Difosfato/metabolismo , Parede Celular/metabolismo , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , Mutação , Uridina Difosfato Xilose/metabolismo , Uridina Difosfato Xilose/genética
3.
Genes (Basel) ; 12(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499195

RESUMO

Cell wall integrity control in plants involves multiple signaling modules that are mostly defined by genetic interactions. The putative co-receptors FEI1 and FEI2 and the extracellular glycoprotein FLA4 present the core components of a signaling pathway that acts in response to environmental conditions and insults to cell wall structure to modulate the balance of various growth regulators and, ultimately, to regulate the performance of the primary cell wall. Although the previously established genetic interactions are presently not matched by intermolecular binding studies, numerous receptor-like molecules that were identified in genome-wide interaction studies potentially contribute to the signaling machinery around the FLA4-FEI core. Apart from its function throughout the model plant Arabidopsis thaliana for the homeostasis of growth and stress responses, the FLA4-FEI pathway might support important agronomic traits in crop plants.


Assuntos
Moléculas de Adesão Celular/metabolismo , Parede Celular/metabolismo , Células Vegetais/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Moléculas de Adesão Celular/genética , Parede Celular/ultraestrutura , Celulose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética
4.
Front Plant Sci ; 11: 563735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013983

RESUMO

In a plant-specific mode of protein glycosylation, various sugars and glycans are attached to hydroxyproline giving rise to a variety of diverse O-glycoproteins. The sub-family of arabinogalactan proteins is implicated in a multitude of biological functions, however, the mechanistic role of O-glycosylation on AGPs by type II arabinogalactans is largely elusive. Some models suggest roles of the O-glycans such as in ligand-receptor interactions and as localized calcium ion store. Structurally different but possibly analogous types of protein O-glycosylation exist in animal and yeast models and roles for O-glycans were suggested in determining the fate of O-glycoproteins by affecting intracellular sorting or proteolytic activation and degradation. At present, only few examples exist that describe how the fate of artificial and endogenous arabinogalactan proteins is affected by O-glycosylation with type II arabinogalactans. In addition to other roles, these glycans might act as a molecular determinant for cellular localization and protein lifetime of many endogenous proteins.

5.
Plant Signal Behav ; 13(9): e1507403, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148420

RESUMO

The Arabidopsis thaliana Fasciclin like arabinogalactan protein 4 (FLA4) locus is required for normal root growth in a linear genetic pathway with the FEI1 and FEI2 loci coding for receptor-like kinases. The two Fas1 domains of FLA4 are conserved among angiosperms but only the C-terminal Fas1 domain is required for genetic function. We show that at low salt deletion of the N-terminal Fas1 domain of transgenic FLA4 leads to enhanced root elongation compared to the tandem Fas1 wild type version. Modeling the hypothetical interaction between FLA4 and FEI1 we show that the predicted interaction is predominantly involving the C-terminal Fas1 domain. Relative conformational mobility between the two FLA4 Fas1 domains might regulate the interaction with the FEI receptor kinases. We therefore speculate that the FLA4 FEI complex might be a sensor for environmental conditions in the apoplast.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Moléculas de Adesão Celular/metabolismo , Magnoliopsida/metabolismo , Proteínas de Arabidopsis/química , Moléculas de Adesão Celular/química , Regulação da Expressão Gênica de Plantas , Homologia Estrutural de Proteína
6.
Int J Mol Sci ; 19(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857505

RESUMO

The Fasciclin 1 (FAS1) domain is an ancient structural motif in extracellular proteins present in all kingdoms of life and particularly abundant in plants. The FAS1 domain accommodates multiple interaction surfaces, enabling it to bind different ligands. The frequently observed tandem FAS1 arrangement might both positively and negatively regulate ligand binding. Additional protein domains and post-translational modifications are partially conserved between different evolutionary clades. Human FAS1 family members are associated with multiple aspects of health and disease. At the cellular level, mammalian FAS1 proteins are implicated in extracellular matrix structure, cell to extracellular matrix and cell to cell adhesion, paracrine signaling, intracellular trafficking and endocytosis. Mammalian FAS1 proteins bind to the integrin family of receptors and to protein and carbohydrate components of the extracellular matrix. FAS1 protein encoding plant genes exert effects on cellulosic and non-cellulosic cell wall structure and cellular signaling but to establish the modes of action for any plant FAS1 protein still requires biochemical experimentation. In fungi, eubacteria and archaea, the differential presence of FAS1 proteins in closely related organisms and isolated biochemical data suggest functions in pathogenicity and symbiosis. The inter-kingdom comparison of FAS1 proteins suggests that molecular mechanisms mediating interactions between cells and their environment may have evolved at the earliest known stages of evolution.


Assuntos
Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilação , Humanos , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
8.
Plant J ; 91(4): 613-630, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28482115

RESUMO

Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Moléculas de Adesão Celular/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Moléculas de Adesão Celular/genética , Retículo Endoplasmático/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Proteínas Luminescentes , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Domínios Proteicos , Transporte Proteico , Proteínas Recombinantes de Fusão
9.
Front Plant Sci ; 7: 1073, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524986

RESUMO

The plant cell wall is held together by the interactions between four major components: cellulose, pectin, hemicellulose, and proteins. Mucilage is a powerful model system to study the interactions between these components as it is formed of polysaccharides that are deposited in the apoplast of seed coat epidermal cells during seed development. When seeds are hydrated, these polysaccharides expand rapidly out of the apoplastic pocket, and form an adherent halo of mucilage around the seed. In Arabidopsis, mutations in multiple genes have similar loss of mucilage adherence phenotypes including CELLULOSE SYNTHASE 5 (CESA5)/MUCILAGE-MODIFIED 3 (MUM3), MUM5/MUCI21, SALT-OVERLY SENSITIVE 5 (SOS5), and FEI2. Here, we examine the interactions between these factors to better understand how they participate to control mucilage adherence. Double mutant phenotypes indicated that MUM5 and CESA5 function in a common mechanism that adheres pectin to the seed through the biosynthesis of cellulose and xylan, whereas SOS5 and FEI2, encoding a fasciclin-like arabinogalactan protein or a receptor-like kinase, respectively, function through an independent pathway. Cytological analyses of mucilage indicates that heteromannans are associated with cellulose, and not in the pathway involving SOS5 or FEI2. A SOS5 fluorescent protein fusion (SOS5-mCITRINE) was localized throughout the mucilage pocket, consistent with a structural role in pectin adhesion. The relationship between SOS5 and FEI2 mediated mucilage adherence was examined in more detail and while sos5 and fei2 mutants show similar phenotypes, key differences in the macromolecular characteristics and amounts of mucilage polymers were observed. FEI2 thus appears to have additional, as well as overlapping functions, with SOS5. Given that FEI2 is required for SOS5 function, we propose that FEI2 serves to localize SOS5 at the plasma membrane where it establishes interactions with mucilage polysaccharides, notably pectins, required for mucilage adherence prior to SOS5 being released into the apoplast.

10.
Int J Mol Sci ; 17(1)2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26771603

RESUMO

Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Processamento de Proteína Pós-Traducional , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glicosilação , Hidroxiprolina/metabolismo , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Transporte Proteico , Protoplastos/metabolismo , Plântula/genética , Plântula/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transfecção
11.
Plant Physiol Biochem ; 92: 39-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25900423

RESUMO

Modification of the plant N-glycosylation pathway towards human type structures is an important strategy to implement plants as expression systems for therapeutic proteins. Nevertheless, relatively little is known about the overall impact of non-plant glycosylation enzymes in stable transformed plants. Here, we analyzed transgenic lines (Nicotiana benthamiana and Arabidopsis thaliana) that stably express a modified version of human ß1,4-galactosyltransferase ((ST)GalT). While some transgenic plants grew normally, other lines exhibited a severe phenotype associated with stunted growth and developmental retardation. The severity of the phenotype correlated with both increased (ST)GalT mRNA and protein levels but no differences were observed between N-glycosylation profiles of plants with and without the phenotype. In contrast to non-transgenic plants, all (ST)GalT expressing plants synthesized significant amounts of incompletely processed (largely depleted of core fucose) N-glycans with up to 40% terminally galactosylated structures. While transgenic plants showed no differences in nucleotide sugar composition and cell wall monosaccharide content, alterations in the reactivity of cell wall carbohydrate epitopes associated with arabinogalactan-proteins and pectic homogalacturonan were detected in (ST)GalT expressing plants. Notably, plants with phenotypic alterations showed increased levels of hydrogen peroxide, most probably a consequence of hypersensitive reactions. Our data demonstrate that unfavorable phenotypical modifications may occur upon stable in planta expression of non-native glycosyltransferases. Such important issues need to be taken into consideration in respect to stable glycan engineering in plants.


Assuntos
Arabidopsis/genética , N-Acetil-Lactosamina Sintase/genética , Nicotiana/genética , Fenótipo , Plantas Geneticamente Modificadas , Polissacarídeos/biossíntese , Arabidopsis/metabolismo , Parede Celular/metabolismo , Epitopos , Galactosiltransferases/metabolismo , Engenharia Genética , Glicosilação , Humanos , Peróxido de Hidrogênio/metabolismo , Mucoproteínas/metabolismo , N-Acetil-Lactosamina Sintase/metabolismo , Pectinas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
12.
Plant Signal Behav ; 10(2): e989064, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826261

RESUMO

We previously suggested that At-FLA4 and ABA signaling act in synergy. Reactive oxygen species generated from the NADPH oxidases At-RBOHD and At-RBOHF play an important role in cell wall integrity control and ABA signaling and here we investigate their role for the At-FLA4 pathway. We find that in the At-fla4 At-rbohD At-rbohF triple mutant the root phenotype of At-fla4 is enhanced. Moreover, the abnormally high level of reactive oxygen species in At-fla4 mutant does not depend on AtRBOHD and -F. Likewise, suppression of the At-fla4 phenotype by ABA does not depend on the 2 oxidases. Consistent with their lack of effect on ROS level in At-fla4, transcript level of AtRBOHD and -F is reduced in the At-fla4 mutant background. Taken together, our findings suggest that neither At-RBOHD nor At-RBOHF is involved in the synergism between ABA and At-FLA4. Consistently, the oxidases and At-FLA4 act independently of each other in ROS control.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Moléculas de Adesão Celular/metabolismo , NADPH Oxidases/metabolismo , Transdução de Sinais , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/farmacologia
13.
Plant Physiol ; 165(3): 991-1004, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24808103

RESUMO

Interactions between cell wall polymers are critical for establishing cell wall integrity and cell-cell adhesion. Here, we exploit the Arabidopsis (Arabidopsis thaliana) seed coat mucilage system to examine cell wall polymer interactions. On hydration, seeds release an adherent mucilage layer strongly attached to the seed in addition to a nonadherent layer that can be removed by gentle agitation. Rhamnogalacturonan I (RG I) is the primary component of adherent mucilage, with homogalacturonan, cellulose, and xyloglucan constituting minor components. Adherent mucilage contains rays composed of cellulose and pectin that extend above the center of each epidermal cell. CELLULOSE SYNTHASE5 (CESA5) and the arabinogalactan protein SALT-OVERLY SENSITIVE5 (SOS5) are required for mucilage adherence through unknown mechanisms. SOS5 has been suggested to mediate adherence by influencing cellulose biosynthesis. We, therefore, investigated the relationship between SOS5 and CESA5. cesa5-1 seeds show reduced cellulose, RG I, and ray size in adherent mucilage. In contrast, sos5-2 seeds have wild-type levels of cellulose but completely lack adherent RG I and rays. Thus, relative to each other, cesa5-1 has a greater effect on cellulose, whereas sos5-2 mainly affects pectin. The double mutant cesa5-1 sos5-2 has a much more severe loss of mucilage adherence, suggesting that SOS5 and CESA5 function independently. Double-mutant analyses with mutations in MUCILAGE MODIFIED2 and FLYING SAUCER1 that reduce mucilage release through pectin modification suggest that only SOS5 influences pectin-mediated adherence. Together, these findings suggest that SOS5 mediates adherence through pectins and does so independently of but in concert with cellulose synthesized by CESA5.

14.
Ann Bot ; 114(6): 1125-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24603604

RESUMO

BACKGROUND AND AIMS: The putative FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 4 (At-FLA4) locus of Arabidopsis thaliana has previously been shown to be required for the normal growth of wild-type roots in response to moderately elevated salinity. However, the genetic and physiological pathway that connects At-FLA4 and normal root growth remains to be elucidated. METHODS: The radial swelling phenotype of At-fla4 was modulated with growth regulators and their inhibitors. The relationship of At-FLA4 to abscisic acid (ABA) signalling was analysed by probing marker gene expression and the observation of the At-fla4 phenotype in combination with ABA signalling mutants. KEY RESULTS: Application of ABA suppresses the non-redundant role of At-FLA4 in the salt response. At-FLA4 positively regulates the response to low ABA concentration in roots and is required for the normal expression of ABA- and abiotic stress-induced genes. The At-fla4 phenotype is enhanced in the At-abi4 background, while two genetic suppressors of ABA-induced gene expression are required for salt oversensitivity of At-fla4. Salt oversensitivity in At-fla4 is suppressed by the CYP707A inhibitor abscinazole E2B, and salt oversensitivity in At-fla4 roots is phenocopied by chemical inhibition of ABA biosynthesis. CONCLUSIONS: The predicted lipid-anchored glycoprotein At-FLA4 positively regulates cell wall biosynthesis and root growth by modulating ABA signalling.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mucoproteínas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Modelos Genéticos , Mucoproteínas/metabolismo , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Triazóis/farmacologia
15.
16.
Methods Mol Biol ; 715: 221-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21222088

RESUMO

Undoubtedly, the function of the plant cell wall in the control of cell growth far exceeds its mechanical role. The plant's monitoring of cell wall function and integrity comprises a central checkpoint to integrate cues for survival and division, expansion and differentiation, as well as fluctuations in the biotic and abiotic environment (Somerville et al., Science 306:2206-2211, 2004). With their biochemical nature yet unknown, the identification of molecular constituents of cell wall performance, and integrity control initially depends on a combination of genetic and physiological approaches.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Parede Celular/metabolismo , Mucoproteínas/metabolismo , Apoptose , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Mapeamento Cromossômico , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Genótipo , Glucosídeos/síntese química , Glucosídeos/metabolismo , Glicosilação , Imunoquímica , Endogamia , Indicadores e Reagentes , Mucoproteínas/genética , Mutagênese , Floroglucinol/análogos & derivados , Floroglucinol/síntese química , Floroglucinol/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Polinização , Ligação Proteica , Análise de Sequência de DNA
18.
Plant Cell ; 21(12): 3850-67, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20023195

RESUMO

In eukaryotes, class I alpha-mannosidases are involved in early N-glycan processing reactions and in N-glycan-dependent quality control in the endoplasmic reticulum (ER). To investigate the role of these enzymes in plants, we identified the ER-type alpha-mannosidase I (MNS3) and the two Golgi-alpha-mannosidase I proteins (MNS1 and MNS2) from Arabidopsis thaliana. All three MNS proteins were found to localize in punctate mobile structures reminiscent of Golgi bodies. Recombinant forms of the MNS proteins were able to process oligomannosidic N-glycans. While MNS3 efficiently cleaved off one selected alpha1,2-mannose residue from Man(9)GlcNAc(2), MNS1/2 readily removed three alpha1,2-mannose residues from Man(8)GlcNAc(2). Mutation in the MNS genes resulted in the formation of aberrant N-glycans in the mns3 single mutant and Man(8)GlcNAc(2) accumulation in the mns1 mns2 double mutant. N-glycan analysis in the mns triple mutant revealed the almost exclusive presence of Man(9)GlcNAc(2), demonstrating that these three MNS proteins play a key role in N-glycan processing. The mns triple mutants displayed short, radially swollen roots and altered cell walls. Pharmacological inhibition of class I alpha-mannosidases in wild-type seedlings resulted in a similar root phenotype. These findings show that class I alpha-mannosidases are essential for early N-glycan processing and play a role in root development and cell wall biosynthesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Polissacarídeos/metabolismo , alfa-Manosidase/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Linhagem Celular , Parede Celular/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Retículo Endoplasmático/enzimologia , Teste de Complementação Genética , Glicosilação , Complexo de Golgi/enzimologia , Mutagênese Insercional , Mutação , Filogenia , Raízes de Plantas/enzimologia , RNA de Plantas/genética , Spodoptera/citologia , Especificidade por Substrato , alfa-Manosidase/genética
19.
BMC Bioinformatics ; 9 Suppl 9: S7, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18793471

RESUMO

BACKGROUND: Most existing transcriptional databases like Comprehensive Systems-Biology Database (CSB.DB) and Arabidopsis Microarray Database and Analysis Toolbox (GENEVESTIGATOR) help to seek a shared biological role (similar pathways and biosynthetic cycles) based on correlation. These utilize conventional methods like Pearson correlation and Spearman rank correlation to calculate correlation among genes. However, not all are genes expressed in all the conditions and this leads to their exclusion in these transcriptional databases that consist of experiments performed in varied conditions. This leads to incomplete studies of co-regulation among groups of genes that might be linked to the same or related biosynthetic pathway. RESULTS: We have implemented an alternate method based on graph theory that takes into consideration the biological assumption - conditional co-regulation is needed to mine a large transcriptional data bank and properties of microarray data. The algorithm calculates relationships among genes by converting discretized signals from the time series microarray data (AtGenExpress) to output strings. A 'score' is generated by using a similarity index against all the other genes by matching stored strings for any gene queried against our database.Taking carbohydrate metabolism as a test case, we observed that those genes known to be involved in similar functions and pathways generate a high 'score' with the queried gene. We were also able to recognize most of the randomly selected correlated pairs from Pearson correlation in CSB.DB and generate a higher number of relationships that might be biologically important. One advantage of our method over previously described approaches is that it includes all genes regardless of its expression values thereby highlighting important relationships absent in other contemporary databases. CONCLUSION: Based on promising results, we understand that incorporating conditional co-regulation to study large expression data helps us identify novel relationships among genes. The other advantage of our approach is that mining expression data from various experiments, the genes that do not express in all the conditions or have low expression values are not excluded, thereby giving a better overall picture. This results in addressing known limitations of clustering methods in which genes that are expressed in only a subset of conditions are omitted.Based on further scope to extract information, ASIDB implementing above described approach has been initiated as a model database. ASIDB is available at http://www.asidb.com.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Família Multigênica/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição/metabolismo , Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA