Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Inflamm (Lond) ; 21(1): 4, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355547

RESUMO

Tissue-plasminogen activator (tPA) is a serine protease well known for its fibrinolytic function. Recent studies indicate that tPA could also modulate inflammation via plasmin generation and/or by receptor mediated signalling in vitro. However, the contribution of tPA in inflammatory processes in vivo has not been fully addressed. Therefore, using tPA-deficient mice, we have analysed the effect of lipopolysaccharide (LPS) challenge on the phenotype of myeloid cells including neutrophils, macrophages and dendritic cells (DCs) in spleen. We found that LPS treatment upregulated the frequency of major histocompatibility class two (MHCII+) macrophages but also, paradoxically, induced a deep downregulation of MHCII molecule level on macrophages and on conventional dendritic cells 2 (cDC2). Expression level of the CD11b integrin, known as a tPA receptor, was upregulated by LPS on MHCII+ macrophages and cDC2, suggesting that tPA effects could be amplified during inflammation. In tPA-/- mice under inflammatory conditions, expression of costimulatory CD86 molecules on MHCII+ macrophages was decreased compared to WT mice, while in steady state the expression of MHCII molecules was higher on macrophages. Finally, we reported that tPA deficiency slightly modified the phenotype of DCs and T cells in acute inflammatory conditions. Overall, our findings indicate that in vivo, LPS injection had an unexpectedly bimodal effect on MHCII expression on macrophages and DCs that consequently might affect adaptive immunity. tPA could also participate in the regulation of the T cell response by modulating the levels of CD86 and MHCII molecules on macrophages.

2.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142247

RESUMO

The excitatory neurotransmission of the central nervous system (CNS) mainly involves glutamate and its receptors, especially N-methyl-D-Aspartate receptors (NMDARs). These receptors have been extensively described on neurons and, more recently, also on other cell types. Nowadays, the study of their differential expression and function is taking a growing place in preclinical and clinical research. The diversity of NMDAR subtypes and their signaling pathways give rise to pleiotropic functions such as brain development, neuronal plasticity, maturation along with excitotoxicity, blood-brain barrier integrity, and inflammation. NMDARs have thus emerged as key targets for the treatment of neurological disorders. By their large extracellular regions and complex intracellular structures, NMDARs are modulated by a variety of endogenous and pharmacological compounds. Here, we will present an overview of NMDAR functions on neurons and other important cell types involved in the pathophysiology of neurodegenerative, neurovascular, mental, autoimmune, and neurodevelopmental diseases. We will then discuss past and future development of NMDAR targeting drugs, including innovative and promising new approaches.


Assuntos
Doenças do Sistema Nervoso Central , Receptores de N-Metil-D-Aspartato , Doenças do Sistema Nervoso Central/tratamento farmacológico , Ácido Glutâmico/metabolismo , Humanos , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica
3.
Cell Immunol ; 371: 104451, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781155

RESUMO

The COVID-19 pandemic has once again brought to the forefront the existence of a tight link between the coagulation/fibrinolytic system and the immunologic processes. Tissue-type plasminogen activator (tPA) is a serine protease with a key role in fibrinolysis by converting plasminogen into plasmin that can finally degrade fibrin clots. tPA is released in the blood by endothelial cells and hepatocytes but is also produced by various types of immune cells including T cells and monocytes. Beyond its role on hemostasis, tPA is also a potent modulator of inflammation and is involved in the regulation of several inflammatory diseases. Here, after a brief description of tPA structure, we review its new functions in adaptive immunity focusing on T cells and antigen presenting cells. We intend to synthesize the recent knowledge on proteolysis- and receptor-mediated effects of tPA on immune response in physiological and pathological context.


Assuntos
Coagulação Sanguínea/imunologia , COVID-19/imunologia , Fibrinólise/imunologia , Imunidade/imunologia , SARS-CoV-2/imunologia , Ativador de Plasminogênio Tecidual/imunologia , Células Apresentadoras de Antígenos/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Modelos Imunológicos , Pandemias , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Ativador de Plasminogênio Tecidual/metabolismo
4.
J Neuroinflammation ; 18(1): 52, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33610187

RESUMO

BACKGROUND: Tissue plasminogen activator (tPA) is a serine protease involved in fibrinolysis. It is released by endothelial cells, but also expressed by neurons and glial cells in the central nervous system (CNS). Interestingly, this enzyme also contributes to pathological processes in the CNS such as neuroinflammation by activating microglia and increasing blood-brain barrier permeability. Nevertheless, its role in the control of adaptive and innate immune response remains poorly understood. METHODS: tPA effects on myeloid and lymphoid cell response were studied in vivo in the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis and in vitro in splenocytes. RESULTS: tPA-/- animals exhibited less severe experimental autoimmune encephalomyelitis than their wild-type counterparts. This was accompanied by a reduction in both lymphoid and myeloid cell populations in the spinal cord parenchyma. In parallel, tPA increased T cell activation and proliferation, as well as cytokine production by a protease-dependent mechanism and via plasmin generation. In addition, tPA directly raised the expression of MHC-II and the co-stimulatory molecules CD80 and CD86 at the surface of dendritic cells and macrophages by a direct action dependent of the activation of epidermal growth factor receptor. CONCLUSIONS: Our study provides new insights into the mechanisms responsible for the harmful functions of tPA in multiple sclerosis and its animal models: tPA promotes the proliferation and activation of both lymphoid and myeloid populations by distinct, though complementary, mechanisms.


Assuntos
Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/induzido quimicamente , Ativação Linfocitária/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/toxicidade , Animais , Feminino , Humanos , Ativação Linfocitária/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , Ativador de Plasminogênio Tecidual/deficiência
5.
Front Immunol ; 11: 854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536913

RESUMO

Previous studies showed that monoclonal immunoglobulins G (IgGs) of "monoclonal gammopathy of undetermined significance" (MGUS) and myeloma were hyposialylated, thus presumably pro-inflammatory, and for about half of patients, the target of the monoclonal IgG was either a virus-Epstein-Barr virus (EBV), other herpes viruses, hepatitis C virus (HCV)-or a glucolipid, lysoglucosylceramide (LGL1), suggesting antigen-driven disease in these patients. In the present study, we show that monoclonal IgAs share these characteristics. We collected 35 sera of patients with a monoclonal IgA (6 MGUS, 29 myeloma), and we were able to purify 25 of the 35 monoclonal IgAs (6 MGUS, 19 myeloma). Monoclonal IgAs from MGUS and myeloma patients were significantly less sialylated than IgAs from healthy volunteers. When purified monoclonal IgAs were tested against infectious pathogens and LGL1, five myeloma patients had a monoclonal IgA that specifically recognized viral proteins: the core protein of HCV in one case, EBV nuclear antigen 1 (EBNA-1) in four cases (21.1% of IgA myeloma). Monoclonal IgAs from three myeloma patients reacted against LGL1. In summary, monoclonal IgAs are hyposialylated and as described for IgG myeloma, significant subsets (8/19, or 42%) of patients with IgA myeloma may have viral or self (LGL1) antigen-driven disease.


Assuntos
Anticorpos Monoclonais/sangue , Imunoglobulina A/sangue , Gamopatia Monoclonal de Significância Indeterminada/sangue , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Mieloma Múltiplo/sangue , Mieloma Múltiplo/imunologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/imunologia , Antígenos Virais/imunologia , Estudos de Coortes , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Feminino , Glucosilceramidas/imunologia , Glicosilação , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Herpesvirus Humano 4/imunologia , Humanos , Imunoglobulina A/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas do Core Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA