Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(3): 1078-1086, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620879

RESUMO

Although unknown 25 years ago, natural arsenic contamination of groundwater affects over 50 countries and up to 200 million people. The economic viability was analyzed and modeled of eighty-eight community-based arsenic mitigation systems existing for up to 20 years in India and Bangladesh. The performances of three community-based arsenic mitigation systems that are ethnically different and separated across two different countries were monitored closely for 24 months of self-sustainable, long-term operation at WHO standards through local, paid caretakers. Based on data from the use of hybrid ion exchange materials (HIX-Nano) and the broad set of field operations, Monte Carlo simulations were used to explore the conditions required for self-sustainable operation and job creation in low-income communities (<$2/day/capita). The results from field data and cost modeling provided clear evidence of economic growth and job creation for systems managed by villagers' committee through collection of monthly tariffs. Ethnicity and religion did not have perceptible impacts on day-to-day operations or cumulative long-term revenue. The cost of the treatment technology (i.e., HIX-Nano) had minimal impact on the operational profitability, while number of customers and water delivery significantly affected profitability. Local employment generation with income significantly higher than poverty level was the most enduring outcome and led to enhanced sustainability.


Assuntos
Arsênio , Poluentes Químicos da Água , Bangladesh , Países em Desenvolvimento , Índia , Empresa de Pequeno Porte , Abastecimento de Água
2.
Sci Total Environ ; 488-489: 547-53, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24321388

RESUMO

In trying to address the public health crisis from the lack of potable water, millions of tube wells have been installed across the world. From these tube wells, natural groundwater contamination from arsenic regularly puts at risk the health of over 100 million people in South and Southeast Asia. Although there have been many research projects, awards and publications, appropriate treatment technology has not been matched to ground level realities and water solutions have not scaled to reach millions of people. For thousands of people from Nepal to India to Cambodia, hybrid anion exchange (HAIX) resins have provided arsenic-safe water for up to nine years. Synthesis of HAIX resins has been commercialized and they are now available globally. Robust, reusable and arsenic-selective, HAIX has been in operation in rural communities over numerous cycles of exhaustion-regeneration. All necessary testing and system maintenance is organized by community-level water staff. Removed arsenic is safely stored in a scientifically and environmentally appropriate manner to prevent future hazards to animals or people. Recent installations have shown the profitability of HAIX-based arsenic treatment, with capital payback periods of only two years in ideal locations. With an appropriate implementation model, HAIX-based treatment can rapidly scale and provide arsenic-safe water to at-risk populations.


Assuntos
Arsênio/análise , Recuperação e Remediação Ambiental/métodos , Purificação da Água/métodos , Ânions/química , Arsênio/química , Países em Desenvolvimento , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA