Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732406

RESUMO

The enhancement of the plant seed yield and quality represents the basis of the successful productivity of the deriving crop. The effect of single and combined foliar treatments of lettuce plants with sodium selenate and garlic bulb extract on seed yield and quality and on mature plant biochemical characteristics was investigated using four lettuce cultivars (Bouquet, Picnic, Moskovsky parnikovy and Cavalier). The seed production of plants treated with Se increased by 20-41%, compared to the untreated control plants, while the augmentation was as much as 10-23% and 17-27% under garlic extract and the joint application of Se and garlic, respectively. Garlic extract stimulated the accumulation of Se in lettuce seeds, which rose by 1.21-1.29 times compared to the Se-treated plants. The proline levels in lettuce seeds exceeded the corresponding values recorded in the control ones by 1.32-1.64 times in the case of the Se supply, 1.10-1.47 times upon garlic extract application and 1.09-1.31 times under the combined Se/garlic treatment. All the treatments given to lettuce plants increased the leaf weight by 1.10-1.30 times, compared to the untreated control. The seed Se levels positively correlated with the leaf weight (r = 0.621; p < 0.005), chlorophyll (r = 0.672, p < 0.002) and total antioxidant activity (AOA; r = 0.730, p < 0.001) of plants grown from these seeds. Positive correlations were also recorded between the seed proline content and lettuce plant leaf weight, chlorophyll and AOA (r = 0.868, 0.811 and 0.815, respectively, at p < 0.001). Lettuce yield was positively correlated with the leaf AOA, chlorophyll and ascorbic acid content (r = 0.942, 0.921 and 0.665, respectively, at p < 0.001). The results indicate high prospects of Na2SeO4 and garlic extract application to seed-addressed lettuce plants, to improve seed productivity and quality, as well as lettuce yield and quality.

2.
Front Nutr ; 10: 1264999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094920

RESUMO

Introduction: The need for healthy foods has become a major concern in our modern world, as the global population continues to grow and environmental challenges intensify. In response to these challenges, researchers have started to explore a range of sustainable solutions, including organic farming practices, precision agriculture, and the development and testing of innovative biofertilizers. Consistent with these ideas come the aim of this study, which sets out to give new insights into the cultivation of two sweet pepper cultivars with economic and nutritional importance in Romania. Methods: Two sweet pepper cultivars (Blancina and Brillant), chemically (Nutrifine®), organically (Orgevit®) and biologically (Micoseed®) fertilized were cultivated over the course of two years (2019 and 2020), between April and October, in high-tunnel, by following a split-plot design with three replications. Production parameters (number of fruits, fruit weight, yield), proximate composition (water content, dry matter, total soluble solids, acidity, ash), the content of phytonutrients (polyphenols, lycopene, ß-carotene, antioxidant activity), phytochemical composition (phenolic compounds) and minerals (macro- and micro-elements) were analyzed in order to determine the impact of fertilization on the quality of sweet peppers. Results: The results showed that the biological and organic fertilizations had a significant positive impact on most of the parameters analyzed, starting with yield and continuing with acidity, phytonutrient content (total phenolic content, lycopene, ß-carotene), antioxidant activity and phytochemical composition (chlorogenic acid, p-coumaric acid, quercetin and isoquercetin). Only in the case of mineral content, the chemical treatment gave better results compared with the organic and biological fertilizers. Conclusion: Overall, this study provides valuable information on the potential of organic and biological fertilizers to enhance the nutritional value of sweet peppers from Blancina F1 and Brillant F1 cultivars, paving the way for subsequent research aimed at achieving superior quality and increased yields.

3.
Plants (Basel) ; 12(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37571001

RESUMO

Faba bean (Vicia faba L.) has spread worldwide as an excellent source of proteins. To evaluate the efficiency of Se biofortification, four cultivars of V. faba (Belorussian, Russian Black, Hangdown Grünkernig, and Dreifach Weiße) were foliar treated with 1.27 mM solutions of nano-Se, sodium selenate, and sodium selenite. Yield, protein, and Se contents were greatly affected by genetic factors and chemical form of Se. Selenium biofortification levels were negatively correlated with Se concentration in control plants and increased according to the following sequence: nano-Se < sodium selenite < sodium selenate. Contrary to selenate and selenite, nano-Se showed a growth-stimulating effect, improving yield, seed weight, and pod number. Pod thickness decreased significantly as a result of nano-Se supply and increased by 1.5-2.3 times under selenate and selenite supply. The highest Se concentrations were recorded in the seeds of Se-fortified cv. Belorussian and the lowest one in those of Se-treated Hangdown Grünkernig. Protein accumulation was varietal dependent and decreased upon 1.27 mM selenate and selenite treatment in the cvs. Hangdown Grünkernig and Dreifach Weiße. The results indicate the high prospects of nano-Se supply for the production of faba bean seeds with high levels of Se.

4.
Front Plant Sci ; 14: 1222557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521928

RESUMO

Introduction: Smart management in crop cultivation is increasingly supported by application of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting microorganisms (PGPM), which sustain soil fertility and plant performance. The aim of this study was the evaluation of the effects of consortia composed of (Claroideoglomus claroideum BEG96, Claroideoglomus etunicatum BEG92, Funneliformis geosporum BEG199, Funneliformis mosseae BEG 95, and Rhizophagus irregularis BEG140) and PGPM (Azospirillum brasilense - AZ, or Saccharothrix sp. - S) on onion cultivated in growing media with a composition corresponding to a degraded soil. Methods: Three types of substrate formulations were used, with peat:sand ratios of 50:50, 70:30, 100:0 (v:v). The analysis of substrate parameters crucial for its fertility (pH, salinity, sorption complex capacity, and elements' content) and characteristics reflecting onion seedlings' performance (fresh weight, stress biomarkers, and elements' content) was performed. Results: AMF colonized onion roots in all treatments, showing increasing potential to form intercellular structures in the substrates rich in organic matter. Additionally, co-inoculation with PGPM microorganisms accelerated arbuscular mycorrhiza establishment. Increased antioxidant activity and glutathione peroxidase (GPOX) activity of onion roots sampled from the formulations composed of peat and sand in the ratio of 100:0, inoculated with AMF+S, and positive correlation between GPOX, fresh weight and antioxidant activity of onion roots reflected the successful induction of plant acclimatization response. Total phenols content was the highest in roots and leaves of onion grown in substrates with 70:30 peat:sand ratio, and, in the case of roots, it was correlated with AMF colonization parameters but not with antioxidant activity. Discussion: AMF and PGPM efficiency in supporting onion growth should be linked to the increased onion root system capacity in mineral salts absorption, resulting in more efficient aboveground biomass production. AMF and PGPM consortia were effective in releasing minerals to soluble fraction in substrates rich in organic matter, making elements available for uptake by onion root system, though this phenomenon depended on the PGPM species. Microorganism consortia enhanced onion seedlings' performance also in substrates with lower content of organic carbon through plant biofertilization and phytostimulation.

5.
Plants (Basel) ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447092

RESUMO

Natural reserves play a fundamental role in maintaining flora and fauna biodiversity, but the biochemical characteristics of such ecosystems have been studied in an extremely fragmentary way. For the first time, mineral composition and antioxidant status of three systematic groups of organisms, lichens (Diplischistes ocellatus), mushrooms (Calvatia candida and Battarrea phalloides) and wormwood (Artemisia lerchiana) have been described at the territory of Bogdinsko-Baskunchak Nature Reserve (Astrakhan region, Russia), characterized by high salinity and solar radiation, and water deficiency. Through ICP-MS, it was determined that scale lichen D. ocellatus accumulated up to 10-15% Ca, 0.5% Fe, 15 mg kg-1 d.w. iodine (I), 54.5 mg kg-1 Cr. Battarrea phalloides demonstrated anomalously high concentrations of B, Cu, Fe, Mn Se, Zn, Sr and low Na levels, contrary to Calvatia candida mushrooms accumulating up to 10,850 mg kg-1 Na and only 3 mg kg-1 Sr. The peculiarity of A. lerchiana plants was the high accumulation of B (22.23 mg kg-1 d.w.), Mn (57.48 mg kg-1 d.w.), and antioxidants (total antioxidant activity: 68.6 mg GAE g-1 d.w.; polyphenols: 21.0 mg GAE g-1 d.w.; and proline: 5.45 mg g-1 d.w.). Diploschistes ocellatus and Calvatia candida demonstrated the lowest antioxidant status: 3.6-3.8 mg GAE g-1 d.w. total antioxidant activity, 1.73-2.10 mg GAE g-1 d.w. polyphenols and 2.0-5.3 mg g-1 d.w. proline. Overall, according to the elemental analysis of lichen from Baskunchak Nature Reserve compared to the Southern Crimean seashore, the vicinity of Baskunchak Salty Lake elicited increased environmental levels of Cr, Si, Li, Fe, Co, Ni and Ca.

6.
BMC Plant Biol ; 23(1): 329, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37340375

RESUMO

BACKGROUND: Most nanoparticles (NPs) have a significant impact on the structure and function of the plant photosynthetic apparatus. However, their spectrum of action varies significantly, from beneficial stimulation to toxicity, depending on the type of NPs, the concentration used and plant genotypic diversity. Photosynthetic performance can be assessed through chlorophyll a fluorescence (ChlF) measurements. These data allow to indirectly obtain detailed information about primary light reactions, thylakoid electron transport reactions, dark enzymatic stroma reactions, slow regulatory processes, processes at the pigment level. It makes possible, together with leaf reflectance performance, to evaluate photosynthesis sensitivity to stress stimuli. RESULTS: We investigated effects of different metal and metal(oid) oxide nanoparticles on photosynthesis of oakleaf lettuce seedlings by monitoring the chlorophyll a fluorescence light radiation and reflectance from the leaves. Observations of ChlF parameters and changes in leaf morphology were carried out for 9 days in two-day intervals. Spectrophotometric studies were performed at 9th day. Suspensions of NPs with the following concentrations were used: 6% TiO2, SiO2; 3% CeO2, SnO2, Fe2O3; 0.004% (40 ppm) Ag; 0.002% (20 ppm) Au. Nanoparticles were applied directly on the leaves which caused small symptoms of chlorosis, necrosis and leaf veins deformation, but the plants fully recovered to the initial morphological state at 9th day. Leaf reflectance analysis showed an increase in FRI for SiO2-NPs and CeO2-NPs treatments and ARI2 for Fe2O3, however, WBI and PRI coefficients for the latter nanoparticle were lower than in control. Chlorophyll a fluorescence parameters have changed due to NPs treatment. Fe2O3-NPs caused an increase in Fv/F0, PIABS, ET0/RC, DI0/RC, ABS/RC in different time points in comparison to control, also Ag, Au and SnO2 treatment caused an increase in Fv/F0, PIABS or ET0/RC, respectively. On the other hand, TiO2-NPs caused a decrease in Fv/Fm and Fv/F0 parameters, but an increase in DI0/RC value was observed. SnO2-NPs decreased PIABS, but increased ET0/RC than compared to control. Nanoparticles affected the shape of the O-J-I-P curve in slight manner, however, further analyses showed unfavourable changes within the PSII antenna, manifested by a slowdown in the transport of electrons between the Chl molecules of the light-harvesting complex II and the active center of PSII due to NPs application. CONCLUSION: Changes in ChlF parameters and leaf reflectance values clearly proved the significant influence of NPs on the functioning of the photosynthetic apparatus, especially right after NPs application. The nature of these changes was strictly depended on the type of nanoparticles and sometimes underwent very significant changes over time. The greatest changes in ChlF parameters were caused by Fe2O3 nanoparticles, followed by TiO2-NPs. After slight response of O-J-I-P curves to treatment of the plants with NPs the course of the light phase of photosynthesis stabilized and at 9th day were comparable to the control curve.


Assuntos
Clorofila , Nanopartículas , Clorofila A , Lactuca , Óxidos/farmacologia , Fluorescência , Dióxido de Silício/farmacologia , Complexo de Proteína do Fotossistema II , Folhas de Planta/fisiologia
7.
Plants (Basel) ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050049

RESUMO

Biostimulants help plants cope with environmental stresses and improve vegetable yield and quality. This study was conducted to determine the protein hydrolysate (PH) effect of three different durations (weekly applications: three, six, or nine times plus an untreated control) in factorial combination with four soil electrical conductivities (EC: 1.5, 3.0, 4.5, or 6.0 mS·cm-1) on yield, fruit quality, and elemental composition of tomato 'miniplum' grown in a greenhouse. Fruit yield was best affected, during the summer, by six and nine biostimulant applications at EC 3.0 mS·cm-1, and in the same season, the six treatments led to the highest fruit number with no difference compared to nine applications; during the winter, the three and six treatments improved the mentioned variables at each EC level. Fruits' dry residue and Brixo were positively affected by biostimulation both in summer and winter. In summer, the 6.0 mS·cm-1 EC led to the highest dry residue and Brixo values, though the latter did not show any significant difference compared to 4.5 mS·cm-1; in winter, the best results corresponded to 4.5 and 6.0 mS·cm-1. A higher beneficial effect of PH on fruit antioxidant status, i.e., lycopene, polyphenols, ascorbic acid levels, and lipophilic (LAA) and hydrophilic (HAA) activity, was recorded in winter compared with summer. Positive correlations between polyphenols and LAA, as well as ascorbic acid content and HAA were found for all EC and PH treatments. Most of the mineral elements tested demonstrated concentration stability, whereas the highest EC decreased P, Mg, Cu, and Se accumulation. The opposite effect was shown by PH application on Se and Mn levels, with P tending to increase. The concentrations of Fe, Zn, and Cu were the lowest under the longest duration of PH supply. These results further confirm the essential role of plant biostimulation in enhancing tomato yield and quality, with a particular focus on the treatment duration.

8.
Plants (Basel) ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903880

RESUMO

Biofortification of Brassica oleracea with selenium (Se) is highly valuable both for human Se status optimization and functional food production with direct anti-carcinogenic activity. To assess the effects of organic and inorganic Se supply for biofortifying Brassica representatives, foliar applications of sodium selenate and selenocystine (SeCys2) were performed on Savoy cabbage treated with the growth stimulator microalgae Chlorella. Compared to sodium selenate, SeCys2 exerted a stronger growth stimulation of heads (1.3 against 1.14 times) and an increase of leaf concentration of chlorophyll (1.56 against 1.2 times) and ascorbic acid (1.37 against 1.27 times). Head density was reduced by 1.22 times by foliar application of sodium selenate and by 1.58 times by SeCys2. Despite the greater growth stimulation effect of SeCys2, its application resulted in lower biofortification levels (2.9 times) compared to sodium selenate (11.6 times). Se concentration decreased according to the following sequence: leaves > roots > head. The antioxidant activity (AOA) was higher in water extracts compared to the ethanol ones in the heads, but the opposite trend was recorded in the leaves. Chlorella supply significantly increased the efficiency of biofortification with sodium selenate (by 1.57 times) but had no effect in the case of SeCys2 application. Positive correlations were found between leaf and head weight (r = 0.621); head weight and Se content under selenate supply (r = 0.897-0.954); leaf ascorbic acid and total yield (r = 0.559), and chlorophyll (r = +0.83-0.89). Significant varietal differences were recorded for all the parameters examined. The broad comparison performed between the effects of selenate and SeCys2 showed significant genetic differences as well as important peculiarities connected with the Se chemical form and its complex interaction with Chlorella treatment.

9.
Plants (Basel) ; 11(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559533

RESUMO

Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.

10.
Front Plant Sci ; 13: 987641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325561

RESUMO

Salinity is the primary environmental stress that adversely affects plants' growth and productivity in many areas of the world. Published research validated the role of aspartic acid in improving plant tolerance against salinity stress. Therefore, in the present work, factorial pot trials in a completely randomized design were conducted to examine the potential role of exogenous application of aspartic acid (Asp) in increasing the tolerance of wheat (Triticum aestivum L.) plants against salt stress. Wheat plants were sown with different levels of salinity (0, 30, or 60 mM NaCl) and treated with three levels of exogenous application of foliar spray of aspartic acid (Asp) (0, 0.4, 0.6, or 0.8 mM). Results of the study indicated that salinity stress decreased growth attributes like shoot length, leaf area, and shoot biomass along with photosynthesis pigments and endogenous indole acetic acid. NaCl stress reduced the total content of carbohydrates, flavonoid, beta carotene, lycopene, and free radical scavenging activity (DPPH%). However, Asp application enhanced photosynthetic pigments and endogenous indole acetic acid, consequently improving plant leaf area, leading to higher biomass dry weight either under salt-stressed or non-stressed plants. Exogenous application of Asp, up-regulate the antioxidant system viz. antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and nitrate reductase), and non-enzymatic antioxidants (ascorbate, glutathione, total phenolic content, total flavonoid content, beta carotene, lycopene) contents resulted in declined in reactive oxygen species (ROS). The decreased ROS in Asp-treated plants resulted in reduced hydrogen peroxide, lipid peroxidation (MDA), and aldehyde under salt or non-salt stress conditions. Furthermore, Asp foliar application increased compatible solute accumulation (amino acids, proline, total soluble sugar, and total carbohydrates) and increased radical scavenging activity of DPPH and enzymatic ABTS. Results revealed that the quadratic regression model explained 100% of the shoot dry weight (SDW) yield variation. With an increase in Asp application level by 1.0 mM, the SDW was projected to upsurge through 956 mg/plant. In the quadratic curve model, if Asp is applied at a level of 0.95 mM, the SDW is probably 2.13 g plant-1. This study concluded that the exogenous application of aspartic acid mitigated the adverse effect of salt stress damage on wheat plants and provided economic benefits.

11.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290584

RESUMO

Cordyceps militaris has long been used in Eastern medicine for alleviating fatigue and as an immunostimulant. The present study aimed to determine the content of biologically active substances (bioelements and organic compounds), the total phenolic content, and the antioxidant activity of fruiting bodies (commercially available and self-cultivated), mycelia, and two food supplements. The results show that substrate composition and cultivation method had an influence on the properties of mushroom materials. An important aspect of the study is the estimation of the content of bioactive substances present after extraction into digestive juices in the artificial gastrointestinal tract model, which can allow for determining the amount of these substances that is potentially bioavailable for the human body. The best results for cordycepin (81.4 mg/100 g d.w.) and lovastatin (53.6 mg/100 g d.w.) were achieved for commercially available food supplements. Furthermore, after digestion in artificial intestinal juice, the highest amount of cordycepin was determined in the fruiting bodies from commercially obtained (25.9 mg/100 g d.w.) and self-cultivated mushroom (25.8 mg/100 g d.w.). In conclusion, the mycelium and fruiting bodies of C. militaris are ideal food supplements and pharmaceutical agents and can serve as a good source of prohealth substances potentially bioavailable for humans.

12.
Plants (Basel) ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297801

RESUMO

Despite the high value of ramson (Allium ursinum) in medicine and nutrition, it is not cultivated in open fields due to the need for shading as well as weeding during the early crop stages. Research was carried out in an open field with the aim to improve A. ursinum growth, through its intercropping with Armoracia rusticana (horseradish). In the latter context, with and without sodium selenate application, ramson and horseradish showed reciprocal growth stimulation, as ramson biomass increased by 1.28 times and horseradish root biomass by 1.7 times. The biofortification level of horseradish roots increased from 5.9 to 9.6 times due to joint plant growth under selenium (Se) supply. The opposite phenomenon was recorded for ramson leaves, as the biofortification level decreased from 11.7 in the case of Se supplementation to 6.7 in plants supplied with sodium selenate when jointly cultivated with horseradish. Among the tested antioxidants, the highest increase due to joint cultivation and/or Se supply was recorded for ascorbic acid by 1.69 times in ramson leaves and 1.48 and 1.37 times in horseradish roots and leaves, respectively. All treatments significantly increased the total antioxidant activity (AOA) of horseradish leaves (by 1.33-1.49 times) but not roots. Comparison of the results obtained in field conditions with those obtained earlier for the Se biofortification of ramson in the natural habitat (forest) revealed significantly higher levels of the plant's antioxidant status under environmental stress (field) and a decrease in the correspondent differences as a consequence of Se biofortification. The estimation of allelopathic beneficial interaction between ramson and horseradish implies the efficiency of ramson growth and production of functional food with high levels of Se (Se-ramson leaves and Se-horseradish roots).

13.
PLoS One ; 16(11): e0259380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34731216

RESUMO

Plant growth-promoting microbes (PGPM) play vital roles in maintaining crop fitness and soil health in stressed environments. Research have included analysis-based cultivation of soil-microbial-plant relationships to clarify microbiota potential. The goal of the research was to (i) evaluate the symbiotic microorganism effects on tomato seedling fitness under stressed conditions simulating a fragile soil susceptible to degradation; (ii) compare the plant-microbial interactions after inoculation with microbial isolates and fungi-bacteria consortia; (iii) develop an effective crop-microbial network, which improves soil and plant status. The experimental design included non-inoculated treatments with peat and sand at ratios of 50:50, 70:30, 100:0 (v:v), inoculated treatments with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ) using the aforementioned peat:sand ratios; and treatment with peat co-inoculated with AMF and Saccharothrix tamanrassetensis (S). AMF + AZ increased root fresh weight in peat substrate compared to the control (4.4 to 3.3 g plant-1). An increase in shoot fresh weight was detected in the AMF + AZ treatment with a 50:50 peat:sand ratio (10.1 to 8.5 g plant-1). AMF + AZ reduced antioxidant activity (DPPH) (18-34%) in leaves, whereas AMF + S had the highest DPPH in leaves and roots (45%). Total leaf phenolic content was higher in control with a decreased proportion of peat. Peroxidase activity was enhanced in AMF + AZ and AMF + S treatments, except for AMF + AZ in peat. Microscopic root assays revealed the ability of AMF to establish strong fungal-tomato symbiosis; the colonization rate was 78-89%. AMF + AZ accelerated K and Mg accumulation in tomato leaves in treatments reflecting soil stress. To date, there has been no relevant information regarding the successful AMF and Saccharothrix co-inoculation relationship. This study confirmed that AMF + S could increase the P, S, and Fe status of seedlings under high organic C content conditions. The improved tomato growth and nutrient acquisition demonstrated the potential of PGPM colonization under degraded soil conditions.


Assuntos
Azospirillum brasilense/fisiologia , Meios de Cultivo Condicionados/química , Micorrizas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/química , Solanum lycopersicum/microbiologia , Magnésio/química , Peroxidase/metabolismo , Fenol/análise , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Potássio/química , Plântula/crescimento & desenvolvimento , Simbiose
14.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500608

RESUMO

A collection of herbs from the natural environment remains not only a source of raw material but also provides evidence of chemical differentiation of the local populations. This work aimed at performing a phytosociological analysis of seven different stands of meadowsweet (Filipendula ulmaria (L.) Maxim.) occurrence. A determination of total phenolic compounds and salicylates and the antioxidant activity of dried meadowsweet inflorescences (Flos ulmariae) was also performed. Active chemical compounds in F. ulmaria inflorescences were related to chemotype and diversified between investigated populations. Geographical distance and variation in phytosociological locations affected chemical composition in different ways, shaping the content of biochemical compounds crucial for herbal material quality. The obtained results can be a valuable indicator for Nexo and Baligród populations, which are good genetic material for research, breeding, and cultivation due to their biochemical composition, especially with respect to salicylates, as major compounds of determining market quality of Flos ulmariae.


Assuntos
Filipendula/química , Inflorescência/química , Antioxidantes/química , Ecossistema , Fenóis/química , Melhoramento Vegetal/métodos , Extratos Vegetais/química
15.
Front Biosci (Landmark Ed) ; 26(9): 533-542, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590465

RESUMO

Background: Biofortification of vegetables with selenium (Se) greatly depends on species tolerance to Se supply. Due to the scant information regarding kohlrabi Se biofortification, the aim of the present work was the evaluation of foliar sodium selenate application on yield and biochemical characteristics of three kohlrabi cultivars. Material and methods: A two years field experiment was conducted in Moscow region (Russia) on 3 kohlrabi cultivars using foliar biofortification with Na2Se04 solutions (50, 75 and 100 mg/L) and subsequent biochemical analysis of roots, stems and leaves. Results: Out of the three concentrations tested (50, 75 and 100 mg/L) plus an untreated control, the Se 75 dose demonstrated the strongest growth stimulation effect resulting in the increase of stem weight (by 1.35-1.61 times), yield (1.37-1.66 times), monosaccharide (1.59-2.24 times), ascorbic acid (1.54-2.01 times) and total phenolic levels (by 1.23-1.37 times), compared to the untreated control. The biofortification values varied from 69.4 (White Vienna 1390) to 59.9 (Dobrynya F1 hybrid) and 43.6 (Sonata F1 hybrid) under the Se dose of 100 mg/L. The maximum Se content in kohlrabi stems reached 4.40 mg/kg d.w. for Sonata F1, 3.53 mg/kg d.w. for Dobrynya F1 hybrids and 5.20 mg/kg d.w. for cultivar White Vienna 1390. Significant correlations were revealed between Se and total phenolics (0.720; p < 0.002), ascorbic acid (0.842; p < 0.001), monosaccharides (0.898; p < 0.001) and total sugar (0.764; p < 0.001). No significant changes in nitrate levels and dry matter content were recorded as the result of Se supply. Conclusion: The outcomes of the present research demonstrated the high benefits of Se application in improving kohlrabi yield and nutritional quality.


Assuntos
Brassica , Selênio , Biofortificação , Folhas de Planta
16.
Plants (Basel) ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371555

RESUMO

The essentiality of selenium (Se) and iodine (I) to human beings and the widespread areas of selenium and iodine deficiency determine the high significance of functional food production with high levels of these elements. In this respect, joint biofortification of agricultural crops with Se and I is especially attractive. Nevertheless, in practice this topic has raised many problems connected with the possible utilization of many Se and I chemical forms, different doses and biofortification methods, and the existence of wide species and varietal differences. The limited reports relevant to this subject and the multiplicity of unsolved questions urge the need for an adequate evaluation of the results obtained up-to-date, useful for developing further future investigations. The present review discusses the outcome of joint plant Se-I biofortification, as well as factors affecting Se and I accumulation in plants, paying special attention to unsolved issues. A particular focus has been given to the prospects of herb sprouts production enriched with Se and I, as well as the interactions between the latter microelements and arbuscular-mycorrhizal fungi (AMF).

17.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071646

RESUMO

The use of substrates supplemented with minerals is a promising strategy for increasing the nutraceutical value of Pleurotus spp. The current research was performed to analyze the effect of substrate supplementation with magnesium (Mg) salts on the Mg content, biomass, and chemical composition of pink oyster mushroom (Pleurotus djamor) fruiting bodies. Before inoculation, substrate was supplemented with MgCl2 × 6 H2O and MgSO4, both salts were applied at three concentrations: 210, 420, and 4200 mg of Mg per 2 kg of substrate. The harvest period included three flushes. Substrate supplementation with 4200 mg of Mg caused the most significant decrease in mushroom productivity, of about 28% for both Mg salts. The dry matter content in fruiting bodies was significantly lower in the treatment in which 210 mg of Mg was applied as MgSO4 in comparison to the control. Supplementation effectively increased the Mg content in fruiting bodies of P. djamor by 19-85% depending on the treatment, and significantly affected the level of remaining bioelements and anions. One hundred grams of pink oyster fruiting bodies, supplemented with Mg salts, provides more than 20% of the Mg dietary value recommended by the Food and Drug Administration (FDA); thus, supplementation can be an effective technique for producing mushrooms that are rich in dietary Mg. Although P. djamor grown in supplemented substrate showed lower productivity, this was evident only in the fresh weight because the differences in dry weight were negligible. Mg supplementation increased the antioxidant activity of the fruiting bodies, phenolic compounds, and some amino acids, including L-tryptophan, and vitamins (thiamine and l-ascorbic acid).


Assuntos
Suplementos Nutricionais , Carpóforos/química , Magnésio/química , Pleurotus/metabolismo , Agaricales , Ácido Ascórbico/análise , Ácido Ascórbico/química , Biofortificação , Cloretos/química , Meios de Cultura , Tecnologia de Alimentos , Alimento Funcional , Fenol/química , Fenóis/química , Pleurotus/química , Sais/química , Secale/microbiologia , Açúcares/química , Sulfatos/química , Tiamina/análise , Triptofano/análise
18.
PeerJ ; 9: e11463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141469

RESUMO

Many agricultural regions in arid and semiarid climate zone need to deal with increased soil salinity. Legumes are classified as salt-sensitive crops. A field experiment was performed to examine the application of phosphorus (P) fertilizer source and rate on growth, chlorophylls and carotenoid content, DNA and RNA content and ion accumulation in common bean (Phaseolus vulgaris L.) cultivated under salinity stress. An experimental design was split-plot with three replicates. The main plots included two P sources, namely single superphosphate (SP) and urea phosphate (UP). The sub-plots covered four P rates, i.e., 0.0, 17.5, 35.0, and 52.5 kg P ha-1. All applied P fertilization rates, in both forms, increased plant height, leaf area, dry weight of shoots and roots per plant, and total dry weight (TDW) in t ha-1. The highest accumulation of N, P, K+, Mg2+, Mn2+, Zn2+, and Cu2+ was determined in the shoot and root of common bean, while 35 kg of P per ha-1 was used compared to the other levels of P fertilizer. The highest P rate (52.5 kg ha-1) resulted in a significant reduction in Na+ in shoot and root of common bean. The response curve of TDW (t ha-1) to different rates of P (kg ha-1) proved that the quadratic model fit better than the linear model for both P sources. Under SP, the expected TDW was 1.675 t ha-1 if P was applied at 51.5 kg ha-1, while under UP, the maximum expected TDW was 1.875 t ha-1 if P was supplied at 42.5 kg ha-1. In conclusion, the 35.0 kg P ha-1 could be considered the best effective P level imposed. The application of P fertilizer as urea phosphate is generally more effective than single superphosphate in enhancing plant growth and alleviating common bean plants against salinity stress.

19.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947078

RESUMO

Nowadays, there is an increasing interest in nanoparticle (NP) technology used in household and industrial products. It could cause an accumulation and dispersion of NPs in the environment, with possible harmful effects on living organisms. Nanoparticles significantly affect plants and alter their physiology and biochemical pathways, and nanotechnology can be used to improve plant characteristics that are desirable by humans. Therefore, more extensive studies of NP interactions with plants are still needed. The aim of this report is to investigate the effect of TiO2 nanoparticles (TiO2-NPs) on the enzymatic and non-enzymatic antioxidants, fresh and dry weights, and malondialdehyde contents in oakleaf lettuce seedlings. Plants were foliar treated with a 0.75% suspension of TiO2-NPs, while control plants were sprayed with deionized water. Leaves were sampled 4, 7, 9, 11, and 13 days after the treatment. The effects of TiO2-NPs were time-dependent, but the most spectacular changes were observed 4 days after the treatment. Exposure of the plants to TiO2-NPs significantly increased the contents of glutathione at all sampling points, total phenolics at days 4 and 13, and L-ascorbic acid at 4, 7, and 11 days after the treatment. Elevated levels of ascorbate peroxidase and guaiacol peroxidase activities were recorded at days 4 and 13, respectively. Total antioxidant capacity increased initially in treated seedlings, when compared with the control, and then decreased. On day 7, higher fresh and dry weights, as well as malondialdehyde contents in TiO2-NPs treated plants were observed, compared with the control. The study demonstrated that the activation of some antioxidant system components due to TiO2-NPs treatment was connected with the induction of mild oxidative stress, with no external symptoms of NP toxicity in oakleaf lettuce.

20.
Plants (Basel) ; 10(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805750

RESUMO

Chestnuts (Castanea spp.) are plants of relevant economic interest in the agro-sylvicultural contexts of mountain regions throughout the temperate zone, particularly in the northern hemisphere. In recent years, several biological adversities have repeatedly endangered species belonging to this genus, calling for coordinated actions addressed to contrast their decline. These actions have mainly focused on the control of key pests/pathogens and the improvement of resistance/tolerance by the plant host, while the role of microorganisms as mediators of interactions between plants and the noxious agents has been less considered, essentially by reason of a limited knowledge on their ecological impact. In line with the increasing awareness of the basic importance of microbial symbionts in regulating plant fitness in both natural and crop contexts, this paper offers an overview on the occurrence and effects of endophytic fungi of chestnuts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA