Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Structure ; 25(12): 1916-1927, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29174494

RESUMO

The Worldwide PDB recently launched a deposition, biocuration, and validation tool: OneDep. At various stages of OneDep data processing, validation reports for three-dimensional structures of biological macromolecules are produced. These reports are based on recommendations of expert task forces representing crystallography, nuclear magnetic resonance, and cryoelectron microscopy communities. The reports provide useful metrics with which depositors can evaluate the quality of the experimental data, the structural model, and the fit between them. The validation module is also available as a stand-alone web server and as a programmatically accessible web service. A growing number of journals require the official wwPDB validation reports (produced at biocuration) to accompany manuscripts describing macromolecular structures. Upon public release of the structure, the validation report becomes part of the public PDB archive. Geometric quality scores for proteins in the PDB archive have improved over the past decade.


Assuntos
Bases de Dados de Proteínas/normas , Estudos de Validação como Assunto , Análise de Sequência de Proteína/métodos , Análise de Sequência de Proteína/normas
3.
Structure ; 25(3): 536-545, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28190782

RESUMO

OneDep, a unified system for deposition, biocuration, and validation of experimentally determined structures of biological macromolecules to the PDB archive, has been developed as a global collaboration by the worldwide PDB (wwPDB) partners. This new system was designed to ensure that the wwPDB could meet the evolving archiving requirements of the scientific community over the coming decades. OneDep unifies deposition, biocuration, and validation pipelines across all wwPDB, EMDB, and BMRB deposition sites with improved focus on data quality and completeness in these archives, while supporting growth in the number of depositions and increases in their average size and complexity. In this paper, we describe the design, functional operation, and supporting infrastructure of the OneDep system, and provide initial performance assessments.


Assuntos
Proteínas/química , Curadoria de Dados , Bases de Dados de Proteínas , Internet , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Interface Usuário-Computador
4.
J Biol Chem ; 283(33): 22749-59, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18534985

RESUMO

Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular nuclear Overhauser effects. Comparison with GAF domains from PDE2A and adenylyl cyclase cyaB2 reveals a conserved overall domain fold of a six-stranded beta-sheet and four alpha-helices that form a well defined cGMP binding pocket. However, the nucleotide coordination is distinct with a series of altered binding contacts. The structure suggests that nucleotide binding specificity is provided by Asp-196, which is positioned to form two hydrogen bonds to the guanine ring of cGMP. An alanine mutation of Asp-196 disrupts cGMP binding and increases cAMP affinity in constructs containing only GAF A causing an altered cAMP-bound structural conformation. NMR studies on the tandem GAF domains reveal a flexible GAF A domain in the absence of cGMP, and indicate a large conformational change upon ligand binding. Furthermore, we identify a region of approximately 20 residues directly N-terminal of GAF A as critical for tight dimerization of the tandem GAF domains. The features of the PDE5 regulatory domain revealed here provide an initial structural basis for future investigations of the regulatory mechanism of PDE5 and the design of GAF-specific regulators of PDE5 function.


Assuntos
GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Sítios de Ligação , Dimerização , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA