Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Elife ; 102021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587036

RESUMO

The Parkinson's disease protein α-synuclein (αSyn) promotes membrane fusion and fission by interacting with various negatively charged phospholipids. Despite postulated roles in endocytosis and exocytosis, plasma membrane (PM) interactions of αSyn are poorly understood. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3), two highly acidic components of inner PM leaflets, mediate PM localization of endogenous pools of αSyn in A2780, HeLa, SK-MEL-2, and differentiated and undifferentiated neuronal SH-SY5Y cells. We demonstrate that αSyn binds to reconstituted PIP2 membranes in a helical conformation in vitro and that PIP2 synthesizing kinases and hydrolyzing phosphatases reversibly redistribute αSyn in cells. We further delineate that αSyn-PM targeting follows phosphoinositide-3 kinase (PI3K)-dependent changes of cellular PIP2 and PIP3 levels, which collectively suggests that phosphatidylinositol polyphosphates contribute to αSyn's function(s) at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Doença de Parkinson/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , alfa-Sinucleína/metabolismo , Membrana Celular/genética , Humanos , Doença de Parkinson/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Transporte Proteico , alfa-Sinucleína/genética
2.
J Mol Biol ; 432(24): 166689, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33211011

RESUMO

Heterogeneous aggregates of the human protein α-synuclein (αSyn) are abundantly found in Lewy body inclusions of Parkinson's disease patients. While structural information on classical αSyn amyloid fibrils is available, little is known about the conformational properties of disease-relevant, non-canonical aggregates. Here, we analyze the structural and dynamic properties of megadalton-sized dityrosine adducts of αSyn that form in the presence of reactive oxygen species and cytochrome c, a proapoptotic peroxidase that is released from mitochondria during sustained oxidative stress. In contrast to canonical cross-ß amyloids, these aggregates retain high degrees of internal dynamics, which enables their characterization by solution-state NMR spectroscopy. We find that intermolecular dityrosine crosslinks restrict αSyn motions only locally whereas large segments of concatenated molecules remain flexible and disordered. Indistinguishable aggregates form in crowded in vitro solutions and in complex environments of mammalian cell lysates, where relative amounts of free reactive oxygen species, rather than cytochrome c, are rate limiting. We further establish that dityrosine adducts inhibit classical amyloid formation by maintaining αSyn in its monomeric form and that they are non-cytotoxic despite retaining basic membrane-binding properties. Our results suggest that oxidative αSyn aggregation scavenges cytochrome c's activity into the formation of amorphous, high molecular-weight structures that may contribute to the structural diversity of Lewy body deposits.


Assuntos
Amiloide/genética , Doença de Parkinson/genética , Tirosina/análogos & derivados , alfa-Sinucleína/genética , Amiloide/química , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/genética , Citocromos c/genética , Humanos , Espectroscopia de Ressonância Magnética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Estresse Oxidativo/genética , Doença de Parkinson/patologia , Agregados Proteicos/genética , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Tirosina/química , Tirosina/genética , alfa-Sinucleína/ultraestrutura
3.
Chemistry ; 26(65): 14838-14843, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32501570

RESUMO

Oxidation of protein methionines to methionine-sulfoxides (MetOx) is associated with several age-related diseases. In healthy cells, MetOx is reduced to methionine by two families of conserved methionine sulfoxide reductase enzymes, MSRA and MSRB that specifically target the S- or R-diastereoisomers of methionine-sulfoxides, respectively. To directly interrogate MSRA and MSRB functions in cellular settings, we developed an NMR-based biosensor that we call CarMetOx to simultaneously measure both enzyme activities in single reaction setups. We demonstrate the suitability of our strategy to delineate MSR functions in complex biological environments, including cell lysates and live zebrafish embryos. Thereby, we establish differences in substrate specificities between prokaryotic and eukaryotic MSRs and introduce CarMetOx as a highly sensitive tool for studying therapeutic targets of oxidative stress-related human diseases and redox regulated signaling pathways.


Assuntos
Técnicas Biossensoriais , Humanos , Metionina , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Especificidade por Substrato
4.
J Cell Biol ; 218(9): 3117-3133, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31315942

RESUMO

Cells continuously adapt cellular processes by integrating external and internal signals. In yeast, multiple stress signals regulate pheromone signaling to prevent mating under unfavorable conditions. However, the underlying crosstalk mechanisms remain poorly understood. Here, we show that mechanical stress activates Pkc1, which prevents lysis of pheromone-treated cells by inhibiting polarized growth. In vitro Pkc1 phosphorylates conserved residues within the RING-H2 domains of the scaffold proteins Far1 and Ste5, which are also phosphorylated in vivo. Interestingly, Pkc1 triggers dispersal of Ste5 from mating projections upon mechanically induced stress and during cell-cell fusion, leading to inhibition of the MAPK Fus3. Indeed, RING phosphorylation interferes with Ste5 membrane association by preventing binding to the receptor-linked Gßγ protein. Cells expressing nonphosphorylatable Ste5 undergo increased lysis upon mechanical stress and exhibit defects in cell-cell fusion during mating, which is exacerbated by simultaneous expression of nonphosphorylatable Far1. These results uncover a mechanical stress-triggered crosstalk mechanism modulating pheromone signaling, polarized growth, and cell-cell fusion during mating.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Mecânico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/genética , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Elife ; 82019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31310234

RESUMO

Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and synthetic biology.


Assuntos
Eletroporação , Imagem Molecular , Proteínas Recombinantes/metabolismo , Linhagem Celular , Cromossomos Humanos/metabolismo , Farnesiltranstransferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrodinâmica , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Mutação/genética , Prenilação
6.
J Magn Reson ; 306: 202-212, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358370

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for investigating cellular structures and their compositions. While in vivo and whole-cell NMR have a long tradition in cell-based approaches, high-resolution in-cell NMR spectroscopy is a new addition to these methods. In recent years, technological advancements in multiple areas provided converging benefits for cellular MR applications, especially in terms of robustness, reproducibility and physiological relevance. Here, we review the use of cellular NMR methods for drug discovery purposes in academia and industry. Specifically, we discuss how developments in NMR technologies such as miniaturized bioreactors and flow-probe perfusion systems have helped to consolidate NMR's role in cell-based drug discovery efforts.


Assuntos
Células/química , Espectroscopia de Ressonância Magnética/métodos , Preparações Farmacêuticas/química , Animais , Reatores Biológicos , Células/ultraestrutura , Indústria Farmacêutica , Humanos , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Imagem de Perfusão
7.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875725

RESUMO

In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of 'static' and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Animais , Humanos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Processamento de Proteína Pós-Traducional
8.
Proteomics ; 18(21-22): e1800056, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30260559

RESUMO

Targeted proteolysis of the disordered Parkinson's disease protein alpha-synuclein (αSyn) constitutes an important event under physiological and pathological cell conditions. In this work, site-specific αSyn cleavage by different endopeptidases in vitro and by endogenous proteases in extracts of challenged and unchallenged cells was studied by time-resolved NMR spectroscopy. Specifically, proteolytic processing was monitored under neutral and low pH conditions and in response to Rotenone-induced oxidative stress. Further, time-dependent degradation of electroporation-delivered αSyn in intact SH-SY5Y and A2780 cells was analyzed. Results presented here delineate a general framework for NMR-based proteolysis studies in vitro and in cellulo, and confirm earlier reports pertaining to the exceptional proteolytic stability of αSyn under physiological cell conditions. However, experimental findings also reveal altered protease susceptibilities in selected mammalian cell lines and upon induced cell stress.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Humanos , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise
9.
Science ; 360(6387): 423-427, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700264

RESUMO

The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time.


Assuntos
Microscopia de Interferência/métodos , Polimerização , Agregação Patológica de Proteínas , Proteínas/química , Imagem Individual de Molécula/métodos , Actinas/química , Proteínas Amiloidogênicas/química , Humanos , Interferometria/métodos , Espectrometria de Massas/métodos , Análise Espaço-Temporal
10.
Curr Opin Struct Biol ; 46: 110-121, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28735108

RESUMO

Recent developments in cellular cryo-electron tomography, in-cell single-molecule Förster resonance energy transfer-spectroscopy, nuclear magnetic resonance-spectroscopy and electron paramagnetic resonance-spectroscopy delivered unprecedented insights into the inner workings of cells. Here, we review complementary aspects of these methods and provide an outlook toward joint applications in the future.


Assuntos
Técnicas Citológicas/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética
11.
Science ; 354(6309): 233-237, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27738173

RESUMO

Multisite phosphorylation regulates many transcription factors, including the serum response factor partner Elk-1. Phosphorylation of the transcriptional activation domain (TAD) of Elk-1 by the protein kinase ERK at multiple sites potentiates recruitment of the Mediator transcriptional coactivator complex and transcriptional activation, but the roles of individual phosphorylation events had remained unclear. Using time-resolved nuclear magnetic resonance spectroscopy, we found that ERK2 phosphorylation proceeds at markedly different rates at eight TAD sites in vitro, which we classified as fast, intermediate, and slow. Mutagenesis experiments showed that phosphorylation of fast and intermediate sites promoted Mediator interaction and transcriptional activation, whereas modification of slow sites counteracted both functions, thereby limiting Elk-1 output. Progressive Elk-1 phosphorylation thus ensures a self-limiting response to ERK activation, which occurs independently of antagonizing phosphatase activity.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Domínios Proteicos , Fator de Resposta Sérica/metabolismo , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/genética
12.
J Phys Chem Lett ; 7(14): 2821-5, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27379949

RESUMO

In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 µM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures.


Assuntos
Proteínas de Bactérias/metabolismo , Ressonância Magnética Nuclear Biomolecular , Animais , Proteínas de Bactérias/química , Elementos da Série dos Lantanídeos/química , Oócitos/química , Oócitos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Xenopus laevis/crescimento & desenvolvimento
13.
Nat Commun ; 7: 10251, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26807843

RESUMO

Cellular oxidative stress serves as a common denominator in many neurodegenerative disorders, including Parkinson's disease. Here we use in-cell NMR spectroscopy to study the fate of the oxidation-damaged Parkinson's disease protein alpha-synuclein (α-Syn) in non-neuronal and neuronal mammalian cells. Specifically, we deliver methionine-oxidized, isotope-enriched α-Syn into cultured cells and follow intracellular protein repair by endogenous enzymes at atomic resolution. We show that N-terminal α-Syn methionines Met1 and Met5 are processed in a stepwise manner, with Met5 being exclusively repaired before Met1. By contrast, C-terminal methionines Met116 and Met127 remain oxidized and are not targeted by cellular enzymes. In turn, persisting oxidative damage in the C-terminus of α-Syn diminishes phosphorylation of Tyr125 by Fyn kinase, which ablates the necessary priming event for Ser129 modification by CK1. These results establish that oxidative stress can lead to the accumulation of chemically and functionally altered α-Syn in cells.


Assuntos
Doença de Parkinson/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Motivos de Aminoácidos , Humanos , Espectroscopia de Ressonância Magnética , Metionina/metabolismo , Oxirredução , Estresse Oxidativo , Fosforilação , Serina/metabolismo
14.
Nature ; 530(7588): 45-50, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26808899

RESUMO

Intracellular aggregation of the human amyloid protein α-synuclein is causally linked to Parkinson's disease. While the isolated protein is intrinsically disordered, its native structure in mammalian cells is not known. Here we use nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy to derive atomic-resolution insights into the structure and dynamics of α-synuclein in different mammalian cell types. We show that the disordered nature of monomeric α-synuclein is stably preserved in non-neuronal and neuronal cells. Under physiological cell conditions, α-synuclein is amino-terminally acetylated and adopts conformations that are more compact than when in buffer, with residues of the aggregation-prone non-amyloid-ß component (NAC) region shielded from exposure to the cytoplasm, which presumably counteracts spontaneous aggregation. These results establish that different types of crowded intracellular environments do not inherently promote α-synuclein oligomerization and, more generally, that intrinsic structural disorder is sustainable in mammalian cells.


Assuntos
Espaço Intracelular/química , Espaço Intracelular/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Acetilação , Linhagem Celular , Citoplasma/química , Citoplasma/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Neurônios/citologia , Neurônios/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
15.
Mol Cell ; 61(2): 247-59, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26778125

RESUMO

Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function.


Assuntos
DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Animais , Genoma , Histonas/química , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Xenopus laevis
17.
Proc Natl Acad Sci U S A ; 112(40): 12402-7, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392565

RESUMO

Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a ß-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.


Assuntos
Dobramento de Proteína , Desdobramento de Proteína , Proteínas/química , Termodinâmica , Algoritmos , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Temperatura
18.
J Am Chem Soc ; 137(20): 6444-7, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25939020

RESUMO

Growing evidence supports a link between brain copper homeostasis, the formation of alpha-synuclein (AS)-copper complexes, and the development of Parkinson disease (PD). Recently it was demonstrated that the physiological form of AS is N-terminally acetylated (AcAS). Here we used NMR spectroscopy to structurally characterize the interaction between Cu(I) and AcAS. We found that the formation of an AcAS-Cu(I) complex at the N-terminal region stabilizes local conformations with α-helical secondary structure and restricted motility. Our work provides new evidence into the metallo-biology of PD and opens new lines of research as the formation of AcAS-Cu(I) complex might impact on AcAS membrane binding and aggregation.


Assuntos
Cobre/química , Compostos Organometálicos/química , alfa-Sinucleína/química , Acetilação , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Dobramento de Proteína
19.
J Am Chem Soc ; 137(20): 6468-71, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25963544

RESUMO

Cell signaling is governed by dynamic changes in kinase and phosphatase activities, which are difficult to assess with discontinuous readout methods. Here, we introduce an NMR-based reporter approach to directly identify active kinases and phosphatases in complex physiological environments such as cell lysates and to measure their individual activities in a semicontinuous fashion. Multiplexed NMR profiling of reporter phosphorylation states provides unique advantages for kinase inhibitor studies and reveals reversible modulations of cellular enzyme activities under different metabolic conditions.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Células K562 , Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Fatores de Tempo
20.
Curr Opin Struct Biol ; 32: 39-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25727665

RESUMO

Biological reactions occur in a highly organized spatiotemporal context and with kinetics that are modulated by multiple environmental factors. To integrate these variables in our experimental investigations of 'native' biological activities, we require quantitative tools for time-resolved in situ analyses in physiologically relevant settings. Here, we outline the use of high-resolution NMR spectroscopy to directly observe biological reactions in complex environments and in real-time. Specifically, we discuss how real-time NMR (RT-NMR) methods have delineated insights into metabolic processes, post-translational protein modifications, activities of cellular GTPases and their regulators, as well as of protein folding events.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Proteínas/metabolismo , Animais , Biocatálise , Desenho de Equipamento , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular/instrumentação , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA