Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Antiviral Res ; 228: 105923, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844175

RESUMO

There are no approved vaccines or therapeutics for Lassa virus (LASV) infections. To identify compounds with anti-LASV activity, we conducted a cell-based screening campaign at biosafety level 4 and tested almost 60,000 compounds for activity against an infectious reporter LASV. Hits from this screen included several structurally related macrocycles. The most potent, Mac128, had a sub-micromolar EC50 against the reporter virus, inhibited wild-type clade IV LASV, and reduced viral titers by 4 orders of magnitude. Mechanistic studies suggested that Mac128 inhibited viral replication at the level of the polymerase.


Assuntos
Antivirais , Vírus Lassa , Compostos Macrocíclicos , Replicação Viral , Vírus Lassa/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Replicação Viral/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química , Humanos , Animais , Chlorocebus aethiops , Células Vero , Febre Lassa/virologia , Febre Lassa/tratamento farmacológico , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Virais/genética
2.
Antiviral Res ; 217: 105678, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494979

RESUMO

The 36th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held March 13-17, 2023, in Lyon, France, and concurrently through an interactive remote meeting platform. Here we provide a report summarizing the presentations at the 36th ICAR, including the ISAR speaker awards. We also detail special events, sessions, and additional awards conferred at the meeting. ICAR returned to in-person meetings in 2022, convening in Seattle, WA, USA. The 36th ICAR is the first in-person meeting of the society in Europe since the beginning of the COVID-19 pandemic, which restricted most events to virtual attendance to help mitigate the spread and subsequent public health impact of SARS-CoV-2. An exceptionally high number of registrants and record attendance at this year's ICAR, along with a vast array of demonstrable expertise in a variety of antiviral research-related fields, reflected a strong and growing antiviral research community committed to improving health outcomes from viral diseases, including SARS-CoV-2, and to future pandemic preparedness. This report highlights the breadth of expertise, quality of research, and notable advancements that were contributed by members of ISAR and other participants at the meeting. ICAR aims to continue to provide a platform for sharing information, fostering collaborations, and supporting trainees in the field of antiviral research. The 37th ICAR will be held in Gold Coast, Australia, May 20-24, 2024.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Complexo Ferro-Dextran , Pandemias , SARS-CoV-2
3.
Antiviral Res ; 211: 105521, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596323

RESUMO

The 35th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held in Seattle, Washington, USA, on March 21-25, 2022 and concurrently through an interactive remote meeting platform. This report gives an overview of the conference on behalf of the society. It provides a general review of the meeting and awardees, summarizing the presentations and their main conclusions from the perspective of researchers active in many different areas of antiviral research and development. Through ICAR, leaders in the field of antiviral research were able to showcase their efforts, as participants learned about key advances in the field. The impact of these efforts was exemplified by many presentations on SARS-CoV-2 demonstrating the remarkable response to the ongoing pandemic, as well as future pandemic preparedness, by members of the antiviral research community. As we address ongoing outbreaks and seek to mitigate those in the future, this meeting continues to support outstanding opportunities for the exchange of knowledge and expertise while fostering cross-disciplinary collaborations in therapeutic and vaccine development. The 36th ICAR will be held in Lyon, France, March 13-17, 2023.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/uso terapêutico , Washington , Complexo Ferro-Dextran , SARS-CoV-2
4.
Antivir Chem Chemother ; 30: 20402066221130853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36305015

RESUMO

As a result of the multiple gathering and travels restrictions during the SARS-CoV-2 pandemic, the annual meeting of the International Society for Antiviral Research (ISAR), the International Conference on Antiviral Research (ICAR), could not be held in person in 2021. Nonetheless, ISAR successfully organized a remote conference, retaining the most critical aspects of all ICARs, a collegiate gathering of researchers in academia, industry, government and non-governmental institutions working to develop, identify, and evaluate effective antiviral therapy for the benefit of all human beings. This article highlights the 2021 remote meeting, which presented the advances and objectives of antiviral and vaccine discovery, research, and development. The meeting resulted in a dynamic and effective exchange of ideas and information, positively impacting the prompt progress towards new and effective prophylaxis and therapeutics.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Pandemias
5.
Chimia (Aarau) ; 76(5): 409-417, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069712

RESUMO

Over the past two and a half years the world has seen a desperate scramble to find a treatment for SARS-CoV-2 and COVID. In that regard, nucleosides have long served as the cornerstone to antiviral treatments due to their resemblance to the naturally occurring nucleosides that are involved in numerous biological processes. Unlike other viruses however, it was found early on during the search for drugs to treat SARS-1 and later MERS, that the coronaviruses possess a unique repair enzyme, an exonuclease (ExoN)[3] which rendered nucleoside analogues useless, thus negating their use.[4] During the current outbreak however, as both well-known and new nucleoside analogues were investigated or reinvestigated as a possible cure for SARS-CoV-2, several novel and/or lesser-known mechanisms of action were uncovered. This review briefly describes these mechanisms.

6.
Annu Rep Med Chem ; 57: 109-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34728865

RESUMO

The current focus for many researchers has turned to the development of therapeutics that have the potential for serving as broad-spectrum inhibitors that can target numerous viruses, both within a particular family, as well as to span across multiple viral families. This will allow us to build an arsenal of therapeutics that could be used for the next outbreak. In that regard, nucleosides have served as the cornerstone for antiviral therapy for many decades. As detailed herein, many nucleosides have been shown to inhibit multiple viruses due to the conserved nature of many viral enzyme binding sites. Thus, it is somewhat surprising that up until very recently, many researchers focused more on "one bug one drug," rather than trying to target multiple viruses given those similarities. This attitude is now changing due to the realization that we need to be proactive rather than reactive when it comes to combating emerging and reemerging infectious diseases. A brief summary of prominent nucleoside analogues that previously exhibited broad-spectrum activity and are now under renewed interest, as well as new analogues, that are currently under investigation against SARS-CoV-2 and other viruses is discussed herein.

7.
Bioorg Med Chem ; 28(22): 115713, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128910

RESUMO

Flaviviruses, such as Dengue (DENV) and Zika (ZIKV) viruses, represent a severe health burden. There are currently no FDA-approved treatments, and vaccines against most flaviviruses are still lacking. We have developed several flexible analogues ("fleximers") of the FDA-approved nucleoside Acyclovir that exhibit activity against various RNA viruses, demonstrating their broad-spectrum potential. The current study reports activity against DENV and Yellow Fever Virus (YFV), particularly for compound 1. Studies to elucidate the mechanism of action suggest the flex-analogue triphosphates, especially 1-TP, inhibit DENV and ZIKV methyltransferases, and a secondary, albeit weak, effect on the DENV RNA-dependent RNA polymerase was observed at high concentrations. The results of these studies are reported herein.


Assuntos
Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
8.
Chembiochem ; 21(10): 1412-1417, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899839

RESUMO

The structurally unique "fleximer" nucleosides were originally designed to investigate how flexibility in a nucleobase could potentially affect receptor-ligand recognition and function. Recently they have been shown to have low-to-sub-micromolar levels of activity against a number of viruses, including coronaviruses, filoviruses, and flaviviruses. However, the synthesis of distal fleximers in particular has thus far been quite tedious and low yielding. As a potential solution to this issue, a series of proximal fleximer bases (flex-bases) has been successfully coupled to both ribose and 2'-deoxyribose sugars by using the N-deoxyribosyltransferase II of Lactobacillus leichmannii (LlNDT) and Escherichia coli purine nucleoside phosphorylase (PNP). To explore the range of this facile approach, transglycosylation experiments on a thieno-expanded tricyclic heterocyclic base, as well as several distal and proximal flex-bases were performed to determine whether the corresponding fleximer nucleosides could be obtained in this fashion, thus potentially significantly shortening the route to these biologically significant compounds. The results of those studies are reported herein.


Assuntos
Escherichia coli/enzimologia , Lactobacillus leichmannii/enzimologia , Nucleosídeos/biossíntese , Pentosiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Glicosilação , Estrutura Molecular
9.
Molecules ; 24(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546633

RESUMO

Carbocyclic nucleosides have long played a role in antiviral, antiparasitic, and antibacterial therapies. Recent results from our laboratories from two structurally related scaffolds have shown promising activity against both Mycobacterium tuberculosis and several parasitic strains. As a result, a small structure activity relationship study was designed to further probe their activity and potential. Their synthesis and the results of the subsequent biological activity are reported herein.


Assuntos
Antiprotozoários/farmacologia , Nucleosídeos/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacologia , Antiprotozoários/química , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Nucleosídeos/farmacologia , Relação Estrutura-Atividade
10.
Molecules ; 24(17)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480658

RESUMO

Due to their ability to inhibit viral DNA or RNA replication, nucleoside analogues have been used for decades as potent antiviral therapeutics. However, one of the major limitations of nucleoside analogues is the development of antiviral resistance. In that regard, flexible nucleoside analogues known as "fleximers" have garnered attention over the years due to their ability to survey different amino acids in enzyme binding sites, thus overcoming the potential development of antiviral resistance. Acyclic fleximers have previously demonstrated antiviral activity against numerous viruses including Middle East Respiratory Syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), and, most recently, flaviviruses such as Dengue (DENV) and Yellow Fever Virus (YFV). Due to these interesting results, a Structure Activity Relationship (SAR) study was pursued in order to analyze the effect of the pyrimidine functional group and acyl protecting group on antiviral activity, cytotoxicity, and conformation. The results of those studies are presented herein.


Assuntos
Antivirais/química , Antivirais/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Ebolavirus/efeitos dos fármacos , Humanos , Indicadores e Reagentes , Lipídeos/química , Conformação Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
11.
Molecules ; 24(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340431

RESUMO

Pyrrolo[3,2-d]pyrimidines have been studied for many years as potential lead compounds for the development of antiproliferative agents. Much of the focus has been on modifications to the pyrimidine ring, with enzymatic recognition often modulated by C2 and C4 substituents. In contrast, this work focuses on the N5 of the pyrrole ring by means of a series of novel N5-substituted pyrrolo[3,2-d]pyrimidines. The compounds were screened against the NCI-60 Human Tumor Cell Line panel, and the results were analyzed using the COMPARE algorithm to elucidate potential mechanisms of action. COMPARE analysis returned strong correlation to known DNA alkylators and groove binders, corroborating the hypothesis that these pyrrolo[3,2-d]pyrimidines act as DNA or RNA alkylators. In addition, N5 substitution reduced the EC50 against CCRF-CEM leukemia cells by up to 7-fold, indicating that this position is of interest in the development of antiproliferative lead compounds based on the pyrrolo[3,2-d]pyrimidine scaffold.


Assuntos
Antineoplásicos/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 27(13): 2883-2892, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126822

RESUMO

Anti-HIV-1 drug design has been notably challenging due to the virus' ability to mutate and develop immunity against commercially available drugs. The aims of this project were to develop a series of fleximer base analogues that not only possess inherent flexibility that can remain active when faced with binding site mutations, but also target a non-canonical, highly conserved target: the nucleocapsid protein of HIV (NC). The compounds were predicted by computational studies not to function via zinc ejection, which would endow them with significant advantages over non-specific and thus toxic zinc-ejectors. The target fleximer bases were synthesized using palladium-catalyzed cross-coupling techniques and subsequently tested against NC and HIV-1. The results of those studies are described herein.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/síntese química , HIV-1/genética , Proteínas do Nucleocapsídeo/genética , Humanos , Estrutura Molecular
13.
Antiviral Res ; 162: 5-21, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529089

RESUMO

This is the second of two invited articles reviewing the development of nucleoside analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. As with the first paper, rather than providing a chronological account, we have chosen to examine particular examples of structural modifications made to nucleoside analogues that have proven fruitful as various antiviral, anticancer, and other therapeutics. The first review covered the more common, and in most cases, single modifications to the sugar and base moieties of the nucleoside scaffold. This paper focuses on more recent developments, especially nucleoside analogues that contain more than one modification to the nucleoside scaffold. We hope that these two articles will provide an informative historical perspective of some of the successfully designed analogues, as well as many candidate compounds that encountered obstacles.


Assuntos
Antivirais/química , Desenvolvimento de Medicamentos , Nucleosídeos/análogos & derivados , Nucleosídeos/química , Técnicas de Química Sintética/tendências , Ensaios Clínicos como Assunto , Humanos , Estrutura Molecular , Pró-Fármacos
14.
Molecules ; 23(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477147

RESUMO

A series of novel 5'-norcarbocyclic derivatives of 5-alkoxymethyl or 5-alkyltriazolyl-methyl uracil were synthesized and the activity of the compounds evaluated against both Gram-positive and Gram-negative bacteria. The growth of Mycobacterium smegmatis was completely inhibited by the most active compounds at a MIC99 of 67 µg/mL (mc²155) and a MIC99 of 6.7⁻67 µg/mL (VKPM Ac 1339). Several compounds also showed the ability to inhibit the growth of attenuated strains of Mycobacterium tuberculosis ATCC 25177 (MIC99 28⁻61 µg/mL) and Mycobacterium bovis ATCC 35737 (MIC99 50⁻60 µg/mL), as well as two virulent strains of M. tuberculosis; a laboratory strain H37Rv (MIC99 20⁻50 µg/mL) and a clinical strain with multiple drug resistance MS-115 (MIC99 20⁻50 µg/mL). Transmission electron microscopy (TEM) evaluation of M. tuberculosis H37Rv bacterial cells treated with one of the compounds demonstrated destruction of the bacterial cell wall, suggesting that the mechanism of action for these compounds may be related to their interactions with bacteria cell walls.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/ultraestrutura , Relação Estrutura-Atividade , Uracila/análogos & derivados , Uracila/química , Uracila/farmacologia
15.
Beilstein J Org Chem ; 14: 772-785, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719574

RESUMO

C-nucleosides have intrigued biologists and medicinal chemists since their discovery in 1950's. In that regard, C-nucleosides and their synthetic analogues have resulted in promising leads in drug design. Concurrently, advances in chemical syntheses have contributed to structural diversity and drug discovery efforts. Convergent and modular approaches to synthesis have garnered much attention in this regard. Among them nucleophilic substitution at C1' has seen wide applications providing flexibility in synthesis, good yields, the ability to maneuver stereochemistry as well as to incorporate structural modifications. In this review, we describe recent reports on the modular synthesis of C-nucleosides with a focus on D-ribonolactone and sugar modifications that have resulted in potent lead molecules.

16.
Antiviral Res ; 154: 66-86, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29649496

RESUMO

This is the first of two invited articles reviewing the development of nucleoside-analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. Rather than providing a simple chronological account, we have examined and attempted to explain the thought processes, advances in synthetic chemistry and lessons learned from antiviral testing that led to a few molecules being moved forward to eventual approval for human therapies, while others were discarded. The present paper focuses on early, relatively simplistic changes made to the nucleoside scaffold, beginning with modifications of the nucleoside sugars of Ara-C and other arabinose-derived nucleoside analogues in the 1960's. A future paper will review more recent developments, focusing especially on more complex modifications, particularly those involving multiple changes to the nucleoside scaffold. We hope that these articles will help virologists and others outside the field of medicinal chemistry to understand why certain drugs were successfully developed, while the majority of candidate compounds encountered barriers due to low-yielding synthetic routes, toxicity or other problems that led to their abandonment.


Assuntos
Antivirais/química , Desenvolvimento de Medicamentos/métodos , Nucleosídeos/química , Antivirais/farmacologia , Técnicas de Química Sintética , Descoberta de Drogas , Humanos
17.
ChemMedChem ; 13(2): 178-185, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29193845

RESUMO

Halogenated pyrrolo[3,2-d]pyrimidine analogues have shown antiproliferative activity in recent studies, with cell accumulation occurring in the G2 /M stage without apoptosis. However, the mechanism of action and pharmacokinetic (PK) profile of these compounds has yet to be determined. To investigate the PK profile of these compounds, a series of halogenated pyrrolo[3,2-d]pyrimidine compounds was synthesized and first tested for activity in various cancer cell lines followed by a mouse model. EC50 values ranged from 0.014 to 14.5 µm, and maximum tolerated doses (MTD) in mice were between 5 and 10 mg kg-1 . This indicates a wide variance in activity and toxicity that necessitates further study. To decrease toxicity, a second series of compounds was synthesized with N5-alkyl substitutions in an effort to slow the rate of metabolism, which was thought to be leading to the toxicity. The N-substituted compounds demonstrated comparable cell line activity (EC50 values between 0.83-7.3 µm) with significantly decreased toxicity (MTD=40 mg kg-1 ). Finally, the PK profile of the active N5-substituted compound shows a plasma half-life of 32.7 minutes, and rapid conversion into the parent unsubstituted analogue. Together, these data indicate that halogenated pyrrolo[3,2-d]pyrimidines present a promising lead into potent antiproliferative agents with tunable activity and toxicity, and rapid metabolism.


Assuntos
Antineoplásicos/química , Pirimidinas/química , Pirróis/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Dose Máxima Tolerável , Camundongos , Pirimidinas/farmacocinética , Pirimidinas/toxicidade , Pirróis/farmacocinética , Pirróis/toxicidade , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 27(14): 3081-3086, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28571825

RESUMO

Carbocyclic nucleoside analogues have a distinguished history as anti-infectious agents, including key antiviral agents. Toxicity was initially a concern but this was reduced by the introduction of 5'-nor variants. Here, we report the result of our preliminary screening of a series of 5'-norcarbocyclic uridine analogues against protozoan parasites, specifically the major pathogens Leishmania mexicana and Trypanosoma brucei. The series displayed antiparasite activity in the low to mid-micromolar range and establishes a preliminary structure-activity relationship, with the 4',N3-di-(3,5-dimethylbenzoyl)-substituted analogues showing the most prominent activity. Utilizing an array of specially adapted cell lines, it was established that this series of analogues likely act through a common target. Moreover, the strong correlation between the trypanocidal and anti-leishmanial activities indicates that this mechanism is likely shared between the two species. EC50 values were unaffected by the disabling of pyrimidine biosynthesis in T. brucei, showing that these uridine analogues do not act directly on the enzymes of pyrimidine nucleotide metabolism. The lack of cross-resistance with 5-fluorouracil, also establishes that the carbocyclic analogues are not imported through the known uracil transporters, thus offering forth new insights for this class of nucleosides. The lack of cross-resistance with current trypanocides makes this compound class interesting for further exploration.


Assuntos
Antiprotozoários/química , Nucleosídeos de Pirimidina/química , Antiprotozoários/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Fluoruracila/farmacologia , Leishmania mexicana/efeitos dos fármacos , Nucleosídeos de Pirimidina/farmacologia , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
19.
Bioorg Med Chem Lett ; 27(12): 2800-2802, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465098

RESUMO

Fleximers, a novel type of flexible nucleoside that have garnered attention due to their unprecedented activity against human coronaviruses, have now exhibited highly promising levels of activity against filoviruses. The Flex-nucleoside was the most potent against recombinant Ebola virus in Huh7 cells with an EC50=2µM, while the McGuigan prodrug was most active against Sudan virus-infected HeLa cells with an EC50 of 7µM.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Relação Estrutura-Atividade
20.
Bioorg Med Chem ; 24(11): 2476-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27112451

RESUMO

A series of 1,6-bis[(benzyloxy)methyl]uracil derivatives combining structural features of both diphenyl ether and pyridone types of NNRTIs were synthesized. Target compounds were found to inhibit HIV-1 reverse transcriptase at micro- and submicromolar levels of concentrations and exhibited anti-HIV-1 activity in MT-4 cell culture, demonstrating resistance profile similar to first generation NNRTIs. The synthesized compounds also showed profound activity against influenza virus (H1N1) in MDCK cell culture without detectable cytotoxicity. The lead compound of this assay appeared to exceed rimantadine, amantadine, ribavirin and oseltamivir carboxylate in activity. The mechanism of action of 1,6-bis[(benzyloxy)methyl]uracils against influenza virus is currently under investigation.


Assuntos
Antivirais/farmacologia , HIV-1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Uracila/análogos & derivados , Uracila/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Uracila/síntese química , Uracila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA