Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Econ Entomol ; 117(4): 1336-1346, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870416

RESUMO

In recent years, a new phenomenon of early olive drop is causing production losses in olive groves throughout northern Italy. To analyze the possible causes, field and laboratory trials were performed to assess the involvement of fungal pathogens and insect pests in this disease. External and internal symptoms of fungal infections or insect-feeding activities were researched. Fungi present in healthy and dislodged olives were investigated. The relationship between olives that fell and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) infestation was assessed in a controlled infestation trial, and the effectiveness of an insecticidal strategy in reducing early olive drop was tested in open field conditions. A comparable number of fungi, mostly endophytes, were isolated and identified from both healthy and dislodged olives. The damage observed on dislodged olives was primarily ascribed to pentatomids feeding activity. Six stink bugs species were found in olive canopies, that is, the invasive H. halys, which was by far the most abundant, and Acrosternum heegeri Fieber, Nezara viridula (Linnaeus), Palomena prasina (Linnaeus), Piezodorus lituratus (Fabricious), and Rhaphigaster nebulosa (Poda). Halyomorpha halys caused intense fruit drop in the controlled infestation trial, and its infestation level significantly correlated with the number of olives that fell. Native stink bugs, present in much lower population compared to H. halys, could also partially contribute to early drop of olives. Insect proof net significantly reduced the early olive drop disease, while insecticide applications only partially reduced the stink bugs population density and, proportionally, early olive drop.


Assuntos
Heterópteros , Olea , Animais , Itália , Inseticidas , Controle de Insetos , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Hemípteros
2.
Pestic Biochem Physiol ; 201: 105901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685232

RESUMO

Plant diseases caused by Pseudomonas syringae are essentially controlled in the field with the use of copper-based products and antibiotics, raising environmental and safety concerns. Antimicrobial peptides (AMPs) derived from fungi may represent a sustainable alternative to those chemicals. Trichogin GA IV, a non-ribosomal, 11-residue long AMP naturally produced by the fungus Trichoderma longibrachiatum has the ability to insert into phospholipidic membranes and form water-filled pores, thereby perturbing membrane integrity and permeability. In previous studies, peptide analogs modified at the level of specific residues were designed to be water-soluble and active against plant pathogens. Here, we studied the role of glycine-to-lysine substitutions and of the presence of a C-terminal leucine amide on bioactivity against Pseudomonas syringae bacteria. P. syringae diseases affect a wide range of crops worldwide, including tomato and kiwifruit. Our results show that trichogin GA IV analogs containing two or three Gly-to-Lys substitutions are highly effective in vitro against P. syringae pv. tomato (Pst), displaying minimal inhibitory and minimal bactericidal concentrations in the low micromolar range. The same analogs are also able to inhibit in vitro the kiwifruit pathogen P. syringae pv. actinidiae (Psa) biovar 3. When sprayed on tomato plants 24 h before Pst inoculation, only tri-lysine containing analogs were able to significantly reduce bacterial titers and symptom development in infected plants. Our results point to a positive correlation between the number of lysine substitutions and the antibacterial activity. This correlation was supported by microscopy analyses performed with mono-, di- and tri-Lys containing analogs that showed a different degree of interaction with Pst cells and ultrastructural changes that culminated in cell lysis.


Assuntos
Antibacterianos , Lisina , Pseudomonas syringae , Pseudomonas syringae/efeitos dos fármacos , Lisina/química , Lisina/farmacologia , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Peptaibols/farmacologia , Peptaibols/química , Testes de Sensibilidade Microbiana , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Solanum lycopersicum/microbiologia
3.
Biol Methods Protoc ; 9(1): bpad042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229686

RESUMO

Botrytis cinerea is a well-known plant pathogen responsible for grey mould disease infecting more than 500 plant species. It is listed as the second most important plant pathogen scientifically and economically. Its impact is particularly severe in grapes since it affects both the yield of grape berries and the quality of wines. While various methods for detecting B. cinerea have been investigated, the application of Oxford Nanopore Technology (ONT) for complete ribosomal operon sequencing, which has proven effective in human and animal fungal research and diagnostics, has not yet been explored in grapevine (Vitis vinifera) disease research. In this study, we sequenced complete ribosomal operons (∼5.5 kb amplicons), which encompass the 18S, ITS1, 5.8S, ITS2, and 28S regions, from both pure cultures of B. cinerea and infected grapevine leaf samples. Minimap2, a sequence alignment tool integrated into the EPI2ME software, served as a taxonomy classifier, utilizing the custom reference database FRODO. The results demonstrate that B. cinerea was detectable when this pathogen was not the dominant fungal species in leaf samples. Additionally, the method facilitates host DNA-free sequencing and might have a good potential to distinguish other pathogenic and non-pathogenic fungal species hosted within grapevine's infected leaves, such as Alternaria alternata, Saccharomyces cerevisiae, Saccharomyces boulardii, Mucor racemosus, and Ascochyta rabie. The sequences were uploaded to the NCBI database. Long amplicon sequencing method has the capacity to be broadened to other susceptible crops and pathogens, as a valuable tool for early grey rot detection and mycobiome research. Future large-scale studies are needed to overcome challenges, such as comprehensive reference databases for complete fungal ribosomal operons for grape mycobiome studies.

4.
Front Plant Sci ; 14: 1130825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909436

RESUMO

The SDHI fungicide Sedaxane has shown to efficiently control Rhizoctonia spp. growth and to possess biostimulant properties in cereal crops. As a first, the present study investigated its effectiveness as a seed treatment of the dicot species oilseed rape (Brassica napus var. oleifera). For this, seeds were treated with different fungicides: (i) the conventionally used active ingredient Thiram, (ii) Sedaxane, or (iii) Sedaxane in combination with Fludioxonil and Metalaxyl-M, and later sown in soil inoculated with Rhizoctonia solani. The resulting shoot and root growth from the treated seeds were recorded in early growth stages and the presence of Rhizoctonia DNA in the basal stem tissue was quantified. Here we demonstrate that all the fungicide treatments were effective in greatly reducing the presence of Rhizoctonia DNA, with Thiram confirming to have high fungicidal effects. Following seed treatment, shoot and root growth at the 2-leaf stage was reduced regardless of inoculation, indicating that the fungicides became phytotoxic, with particular respect to Thiram. In seedlings grown in inoculated soil, significant biostimulation of the roots was observed at the 4-leaf stage of treatments containing both Sedaxane alone and in a mixture. Leaf area was stimulated in control soil not inoculated with Rhizoctonia, likely due to improved PSII efficiency, stomatal conductance, and CO2 assimilation rate. Young oilseed rape seedlings are thus highly sensitive to seed treatments with these fungicides, and in particular to Thiram. The retardation in growth is quickly overcome by the 4-leaf stage however. We confirm that Sedaxane indeed possesses root biostimulant properties in oilseed rape, which are enhanced in combination with other fungicides. Such biostimulating properties impose its greatest effects under conditions of biotic stress.

5.
Plant Dis ; 107(9): 2643-2652, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36724095

RESUMO

Plasmopara viticola, the agent of grapevine downy mildew, causes enormous economic damage, and its control is primarily based on the use of synthetic fungicides. The European Union policies promote reducing reliance on synthetic plant protection products. Biocontrol agents such as Trichoderma spp. constitute a resource for the development of biopesticides. Trichoderma spp. produce secondary metabolites such as peptaibols, but the poor water solubility of peptaibols limits their practical use as agrochemicals. To identify new potential bio-inspired molecules effective against P. viticola, various water-soluble peptide analogs of the peptaibol trichogin were synthesized. In grapevine leaf disk assays, the peptides analogs at a concentration of 50 µM completely prevented P. viticola infection after zoosporangia inoculation. Microscopic observations of one of the most effective peptides showed that it causes membrane lysis and cytoplasmic granulation in both zoosporangia and zoospores. Among the effective peptides, 4r was selected for a 2-year field trial experiment. In the vineyard, the peptide administered at 100 µM (equivalent to 129.3 g/ha) significantly reduced the disease incidence and severity on both leaves and bunches, with protection levels similar to those obtained using a cupric fungicide. In the second-year field trial, reduced dosages of the peptide were also tested, and even at the peptide concentration reduced by 50 or 75%, a significant decrease in the disease incidence and severity was obtained at the end of the trial. The peptide did not show any phytotoxic effect. Previously, peptide 4r had been demonstrated to be active against other fungal pathogens, including the grapevine fungus Botrytis cinerea. Thus, this peptide may be a candidate for a broad-spectrum fungicide whose biological properties deserve further investigation.


Assuntos
Oomicetos , Peronospora , Trichoderma , Vitis , Peptaibols/metabolismo , Peptaibols/farmacologia , Fazendas , Vitis/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Água
6.
Microorganisms ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838445

RESUMO

Black rot caused by the Gram-negative bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) is considered one of the most destructive diseases affecting crucifers. Xcc is a seedborne pathogen able to infect the host at any growth stage. The management of the pathogen mainly relies on the use of copper-based products with possible negative effects on human health and the environment. Searching for protection alternatives is crucial for achieving a sustainable management of Xcc. Trichoderma spp. has been largely used as a biocontrol agent against several phytopathogens. Among Trichoderma species, Trichoderma longibrachiatum produces the peptaibol trichogin GA IV, a secondary metabolite with antimicrobial activity against Gram-positive bacteria, as well as filamentous and yeast-like fungi. In this work, we tested, at micromolar concentrations, 25 synthetic analogs of the peptaibol trichogin GA IV for their bacteriostatic and bactericidal activity toward the bacterium Xcc. One of the most effective peptides (4r) was also tested against the Gram-negative bacteria Xanthomonas arboricola, Pseudomonas corrugata, Pseudomonas savastanoi pv. savastanoi, Agrobacterium tumefaciens, Ralstonia solanacearum, and Erwinia carotovora subsp. carotovora, as well as the Gram-positive bacterium Bacillus subtilis. The peptide 4r reduced black rot symptoms on cauliflower plants when administered both before and 24 h after inoculation with Xcc. The cytotoxic activity of the peptide 4r was also evaluated towards suspensions of tobacco cells by Evans Blue assay.

7.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499321

RESUMO

Xylanase inhibitors (XIs) are plant cell wall proteins largely distributed in monocots that inhibit the hemicellulose degrading activity of microbial xylanases. XIs have been classified into three classes with different structures and inhibition specificities, namely Triticum aestivum xylanase inhibitors (TAXI), xylanase inhibitor proteins (XIP), and thaumatin-like xylanase inhibitors (TLXI). Their involvement in plant defense has been established by several reports. Additionally, these inhibitors have considerable economic relevance because they interfere with the activity of xylanases applied in several agro-industrial processes. Previous reviews highlighted the structural and biochemical properties of XIs and hypothesized their role in plant defense. Here, we aimed to update the information on the genomic organization of XI encoding genes, the inhibition properties of XIs against microbial xylanases, and the structural properties of xylanase-XI interaction. We also deepened the knowledge of XI regulation mechanisms in planta and their involvement in plant defense. Finally, we reported the recently studied strategies to reduce the negative impact of XIs in agro-industrial processes and mentioned their allergenicity potential.


Assuntos
Endo-1,4-beta-Xilanases , Proteínas de Plantas , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Proteínas de Plantas/metabolismo , Triticum/genética , Imunidade Vegetal , Inibidores Enzimáticos/química
8.
Plants (Basel) ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297699

RESUMO

The negative impact of using conventional fungicides in plant disease protection has increased the interest in safer alternatives such as plant secondary metabolites, generally having a better toxicological profile. However, cultivation conditions and plant material strongly affect the quality and quantity of secondary metabolites obtained from field grown plants, limiting the standardization needed for industrial production. Plant cell culture technology can provide highly homogeneous biomasses with specific chemical characteristics. A phytocomplex with high rosmarinic acid content (10.12% w/w) was obtained from a selected cell line of Salvia officinalis and was tested against the grapevine downy mildew pathogen, Plasmopara viticola. Grapevine leaf discs were sprayed with the phytocomplex at 5 g/L and then inoculated with P. viticola sporangia. Sporulation level on each disc was assessed after 7 days with an image processing software. The phytocomplex reduced by 95% the sporulation level compared to the control and was also more effective than rosmarinic acid alone, used at the same concentration found in the phytocomplex. Persistence of the phytocomplex was also assessed: when applied 5 days before inoculation, it reduced by 90% the sporulation level compared to the control. These results highlight the possibility to take advantage of cell culture techniques to produce safer pesticides with high quality standards.

9.
Front Plant Sci ; 13: 881961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665189

RESUMO

Peptaibols are non-ribosomal linear peptides naturally produced by a wide variety of fungi and represent the largest group of peptaibiotic molecules produced by Trichoderma species. Trichogin GA IV is an 11-residue lipopeptaibol naturally produced by Trichoderma longibrachiatum. Peptaibols possess the ability to form pores in lipid membranes or perturb their surface, and have been studied as antibiotics or anticancer drugs in human medicine, or as antimicrobial molecules against plant pathogens. When applied to plants, peptaibols may also elicit defense responses. A major drawback to the exploitation and application of peptaibols in agriculture is their poor water solubility. In a previous study, we designed water-soluble Lys-containing Trichogin GA IV analogs, which were able to inhibit the growth of several fungal plant pathogens in vitro. In the present study, we shed light on the mechanism underpinning their efficacy on plants, focusing on six Trichogin GA IV analogs. Our results highlighted peptide hydrophilicity, rather than helix stability, as the major determinant of their activity against B. cinerea infection in tomato leaves. The peptides showed preventive but not curative efficacy against infection, and lack of translaminar activity, with results reproducible on two tomato cultivars, Marmande and Micro-Tom. Reactive oxygen species (ROS) detection analysis in tomato and Arabidopsis, and expression of defense genes in tomato, highlighted a transient and limited impact of the peptides on the plant defense system. The treatment did not result in significant modulation of defense genes or defense priming. The antimicrobial effect thus emerges as the only mechanism behind the plant protection ability exerted by water-soluble Trichogin GA IV analogs, and limited effects on the plant metabolism are expected to occur.

10.
Microorganisms ; 10(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35208900

RESUMO

The Snf1 kinase of the glucose signaling pathway controls the response to nutritional and environmental stresses. In phytopathogenic fungi, Snf1 acts as a global activator of plant cell wall degrading enzymes that are major virulence factors for plant colonization. To characterize its role in the virulence of the necrotrophic fungus Botrytis cinerea, two independent deletion mutants of the Bcsnf1 gene were obtained and analyzed. Virulence of the Δsnf1 mutants was reduced by 59% on a host with acidic pH (apple fruit) and up to 89% on hosts with neutral pH (cucumber cotyledon and French bean leaf). In vitro, Δsnf1 mutants grew slower than the wild type strain at both pH 5 and 7, with a reduction of 20-80% in simple sugars, polysaccharides, and lipidic carbon sources, and these defects were amplified at pH 7. A two-fold reduction in secretion of xylanase activities was observed consequently to the Bcsnf1 gene deletion. Moreover, Δsnf1 mutants were altered in their ability to control ambient pH. Finally, Δsnf1 mutants were impaired in asexual sporulation and did not produce macroconidia. These results confirm the importance of BcSnf1 in pathogenicity, nutrition, and conidiation, and suggest a role in pH regulation for this global regulator in filamentous fungi.

11.
Front Microbiol ; 12: 753202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721357

RESUMO

Eco-friendly analogs of Trichogin GA IV, a short peptaibol produced by Trichoderma longibrachiatum, were assayed against Pyricularia oryzae, the causal agent of rice blast disease. In vitro and in vivo screenings allowed us to identify six peptides able to reduce by about 70% rice blast symptoms. One of the most active peptides was selected for further studies. Microscopy analyses highlighted that the treated fungal spores could not germinate and the fluorescein-labeled peptide localized on the spore cell wall and in the agglutinated cytoplasm. Transcriptomic analysis was carried out on P. oryzae mycelium 3 h after the peptide treatment. We identified 1,410 differentially expressed genes, two-thirds of which upregulated. Among these, we found genes involved in oxidative stress response, detoxification, autophagic cell death, cell wall biogenesis, degradation and remodeling, melanin and fatty acid biosynthesis, and ion efflux transporters. Molecular data suggest that the trichogin analogs cause cell wall and membrane damages and induce autophagic cell death. Ultrastructure observations on treated conidia and hyphae confirmed the molecular data. In conclusion, these selected peptides seem to be promising alternative molecules for developing effective bio-pesticides able to control rice blast disease.

12.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639149

RESUMO

Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.


Assuntos
Arabidopsis/imunologia , Botrytis/patogenicidade , Resistência à Doença/imunologia , Endo-1,4-beta-Xilanases/metabolismo , Fusarium/enzimologia , Nicotiana/imunologia , Imunidade Vegetal , Pseudomonas syringae/patogenicidade , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/metabolismo , Nicotiana/microbiologia
13.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053906

RESUMO

Fungal species belonging to the Trichoderma genus are commonly used as biocontrol agents against several crop pathogens. Among their secondary metabolites, peptaibols are helical, antimicrobial peptides, which are structurally stable even under extreme pH and temperature conditions. The promise of peptaibols as agrochemicals is, however, hampered by poor water solubility, which inhibits efficient delivery for practical use in crop protection. Using a versatile synthetic strategy, based on green chemistry procedures, we produced water-soluble analogs of the short-length peptaibol trichogin. Although natural trichogin was inactive against the tested fungal plant pathogens (Botrytis cinerea, Bipolaris sorokiniana, Fusarium graminearum, and Penicillium expansum), three analogs completely inhibited fungal growth at low micromolar concentrations. The most effective peptides significantly reduced disease symptoms by B. cinerea on common bean and grapevine leaves and ripe grape berries without visible phytotoxic effects. An in-depth conformational analysis featuring a 3D-structure-activity relationship study indicated that the relative spatial position of cationic residues is crucial for increasing peptide fungicidal activity.


Assuntos
Substituição de Aminoácidos/efeitos dos fármacos , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Peptaibols/genética , Peptaibols/farmacologia , Doenças das Plantas/microbiologia , Trichoderma/genética , Antifúngicos/química , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptaibols/química , Conformação Proteica , Proteólise , Análise Espectral
14.
Plants (Basel) ; 9(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397168

RESUMO

During host plant infection, pathogens produce a wide array of cell wall degrading enzymes (CWDEs) to break the plant cell wall. Among CWDEs, xylanases are key enzymes in the degradation of xylan, the main component of hemicellulose. Targeted deletion experiments support the direct involvement of the xylanase BcXyn11a in the pathogenesis of Botrytis cinerea. Since the Triticum aestivum xylanase inhibitor-I (TAXI-I) has been shown to inhibit BcXyn11a, we verified if TAXI-I could be exploited to counteract B. cinerea infections. With this aim, we first produced Nicotiana tabacum plants transiently expressing TAXI-I, observing increased resistance to B. cinerea. Subsequently, we transformed Arabidopsis thaliana to express TAXI-I constitutively, and we obtained three transgenic lines exhibiting a variable amount of TAXI-I. The line with the higher level of TAXI-I showed increased resistance to B. cinerea and the absence of necrotic lesions when infiltrated with BcXyn11a. Finally, in a droplet application experiment on wild-type Arabidopsis leaves, TAXI-I prevented the necrotizing activity of BcXyn11a. These results would confirm that the contribution of BcXyn11a to virulence is due to its necrotizing rather than enzymatic activity. In conclusion, our experiments highlight the ability of the TAXI-I xylanase inhibitor to counteract B. cinerea infection presumably by preventing the necrotizing activity of BcXyn11a.

15.
Front Microbiol ; 10: 751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031728

RESUMO

Hydrophobins (HPs) are small secreted fungal proteins possibly involved in several processes such as formation of fungal aerial structures, attachment to hydrophobic surfaces, interaction with the environment and protection against the host defense system. The genome of the necrotrophic plant pathogen Fusarium graminearum contains five genes encoding for HPs (FgHyd1-5). Single and triple FgHyd mutants were produced and characterized. A reduced growth was observed when the ΔFghyd2 and the three triple mutants including the deletion of FgHyd2 were grown in complete or minimal medium. Surprisingly, the growth of these mutants was similar to wild-type when grown under ionic, osmotic or oxidative stress conditions. All the mutant strains confirmed the ability to develop conidia and perithecia, suggesting that the FgHyds are not involved in normal development of asexual and sexual structures. A reduction in the ability of hyphae to penetrate through the water-air interface was observed for the single mutants ΔFghyd2 and ΔFghyd3 as well as for the triple mutants including the deletion of FgHyd2 and FgHyd3. Besides, ΔFghyd3 and the triple mutant ΔFghyd234 were also affected in the attachment to hydrophobic surface. Indeed, wheat infection experiments showed a reduction of symptomatic spikelets for ΔFghyd2 and ΔFghyd3 and the triple mutants only when spray inoculation was performed. This result could be ascribed to the affected ability of mutants deleted of FgHyd2 and FgHyd3 to penetrate through the water-air interface and to attach to hydrophobic surfaces such as the spike tissue. This hypothesis is strengthened by a histological analysis, performed by fluorescence microscopy, showing no defects in the morphology of infection structures produced by mutant strains. Interestingly, triple hydrophobin mutants were significantly more inhibited than wild-type by the treatment with a systemic triazole fungicide, while no defects at the cell wall level were observed.

16.
Plant Physiol Biochem ; 139: 229-238, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30913532

RESUMO

Cerato-platanin proteins (CPPs) are small non-catalytic, cysteine-rich hydrophobic proteins produced by filamentous fungi. The genome of Fusarium graminearum, the causal agent of Fusarium head blight disease of wheat and other cereal grains, contains two genes putatively encoding for CPPs. To better characterize their features, the two FgCPPs were heterologously expressed in Pichia pastoris. The recombinant FgCPPs reduced the viscosity of a cellulose soluble derivate (carboxymethyl cellulose, CMC). The same effect was not observed on other polysaccharide substrates such as chitin, 1,3-ß-glucan, xylan and pectin. Indeed, differently from other fungal CPPs and similarly to expansins, FgCPPs are trapped by cellulose and not by chitin, thus suggesting that these proteins interact with cellulose. A double knock-out mutant deleted of both FgCPPs encoding genes produces much more cellulase activity than the corresponding wild type strain when grown on CMC, likely compensating the absence of FgCPPs. This result prompted us to investigate a possible synergistic effect of these proteins with fungal cellulases. The incubation of FgCPPs in the presence of a fungal cellulase (EC 3.2.1.4) determines an increased enzymatic activity on CMC, filter paper and wheat cell walls. The observation that FgCPPs act with a non-hydrolytic mechanism indicates that these proteins favor fungal cellulase activity in an expansin-like manner. Though the disruption of the FgCPP genes had no demonstrable impact on fungal virulence, our experimental data suggest their probable involvement in virulence, thus we refer to them as accessory virulence genes. Our results suggest also that the FgCPPs could be exploited for future biotechnological application in second-generation biofuels production on lignocellulosic biomasses rich in cellulose. Finally, we demonstrate that FgCPPs act as elicitors of defense responses on Arabidopsis leaves, increasing resistance to Botrytis cinerea infections.


Assuntos
Parede Celular/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Plumbaginaceae/metabolismo
17.
Front Plant Sci ; 8: 2072, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270181

RESUMO

Most crops are routinely protected against seed-born and soil-borne fungal pathogens through seed-applied fungicides. The recently released succinate dehydrogenase inhibitor (SDHI), sedaxane®, is a broad-spectrum fungicide, used particularly to control Rhizoctonia spp., but also has documented growth-enhancement effects on wheat. This study investigates the potential biostimulant effects of sedaxane and related physiological changes in disease-free maize seedlings (3-leaf stage) at increasing application doses (25, 75 and 150 µg a.i. seed-1) under controlled sterilized conditions. We show sedaxane to have significant auxin-like and gibberellin-like effects, which effect marked morphological and physiological changes according to an approximate saturation dose-response model. Maximum benefits were attained at the intermediate dose, which significantly increased root length (+60%), area (+45%) and forks (+51%), and reduced root diameter as compared to untreated controls. Sedaxane enhanced leaf and root glutamine synthetase (GS) activity resulting in greater protein accumulation, particularly in the above-ground compartment, while glutamate synthase (GOGAT) activity remained almost unchanged. Sedaxane also improved leaf phenylalanine ammonia-lyase (PAL) activity, which may be responsible for the increase in shoot antioxidant activity (phenolic acids), mainly represented by p-coumaric and caffeic acids. We conclude that, in addition to its protective effect, sedaxane can facilitate root establishment and intensify nitrogen and phenylpropanoid metabolism in young maize plants, and may be beneficial in overcoming biotic and abiotic stresses in early growth stages.

18.
Mol Plant Microbe Interact ; 30(11): 886-895, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800710

RESUMO

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


Assuntos
Parede Celular/metabolismo , Enzimas/metabolismo , Fusarium/enzimologia , Fusarium/patogenicidade , Glycine max/microbiologia , Triticum/microbiologia , Biomassa , Celulase/genética , Endo-1,4-beta-Xilanases/genética , Focalização Isoelétrica , Mutação/genética , Doenças das Plantas/microbiologia , Poligalacturonase/genética , Plântula/microbiologia , Transformação Genética , Virulência
19.
Plant Physiol Biochem ; 109: 220-229, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27744264

RESUMO

The genome of Fusarium graminearum, a necrotrophic fungal pathogen causing Fusarium head blight (FHB) disease of wheat, barley and other cereal grains, contains five genes putatively encoding for proteins with a cerato-platanin domain. Cerato-platanins are small secreted cysteine-rich proteins possibly localized in the fungal cell walls and also contributing to the virulence. Two of these F. graminearum proteins (FgCPP1 and FgCPP2) belong to the class of SnodProt proteins which exhibit phytotoxic activity in the fungal pathogens Botrytis cinerea and Magnaporthe grisea. In order to verify their contribution during plant infection and fungal growth, single and double gene knock-out mutants were produced and no reduction in symptoms severity was observed compared to the wild type strain on both soybean and wheat spikes. Histological analysis performed by fluorescence microscopy on wheat spikelets infected with mutants constitutively expressing the dsRed confirmed that FgCPPs do not contribute to fungal virulence. In particular, the formation of compound appressoria on wheat paleas was unchanged. Looking for other functions of these proteins, the double mutant was characterized by in vitro experiments. The mutant was inhibited by salt and H2O2 stress similarly to wild type. Though no growth difference was observed on glucose, the mutant grew better than wild type on carboxymethyl cellulose. Additionally, the mutant's mycelium was more affected by treatments with chitinase and ß-1,3-glucanase, thus indicating that FgCPPs could protect fungal cell wall polysaccharides from enzymatic degradation.


Assuntos
Proteínas Fúngicas/fisiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Simulação por Computador , Grão Comestível/microbiologia , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/fisiologia , Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos , Filogenia , Glycine max/microbiologia , Triticum/microbiologia , Virulência/genética , Virulência/fisiologia
20.
Mol Plant Microbe Interact ; 29(4): 258-67, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26713352

RESUMO

The genome of Fusarium graminearum, the causal agent of Fusarium head blight of wheat, contains two putative pectin methylesterase (PME)-encoding genes. However, when grown in liquid culture containing pectin, F. graminearum produces only a single PME, which was purified and identified. Its encoding gene, expressed during wheat spike infection, was disrupted by targeted homologous recombination. Two Δpme mutant strains lacked PME activity but were still able to grow on highly methyl-esterified pectin even though their polygalacturonase (PG) activity showed a reduced capacity to depolymerize this substrate. The enzymatic assays performed with purified F. graminearum PG and PME demonstrated an increase in PG activity in the presence of PME on highly methyl-esterified pectin. The virulence of the mutant strains was tested on Triticum aestivum and Triticum durum spikes, and a significant reduction in the percentage of symptomatic spikelets was observed between 7 and 12 days postinfection compared with wild type, demonstrating that the F. graminearum PME contributes to fungal virulence on wheat by promoting spike colonization in the initial and middle stages of infection. In contrast, transgenic wheat plants with increased levels of pectin methyl esterification did not show any increase in resistance to the Δpme mutant, indicating that the infectivity of the fungus relies only to a certain degree on pectin degradation.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Fusarium/enzimologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Resistência à Doença , Esterificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidade , Mutação , Pectinas/metabolismo , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Triticum/genética , Triticum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA